Suppr超能文献

通过仿生聚合物实现硅纳米线与二氧化钛的异质结用于高效光催化析氢

Heterojunction of Silicon Nanowires and TiO via Bioinspired Polymer for Efficient Photocatalytic Hydrogen Evolution.

作者信息

Szewczyk Jakub, Chaitoglou Stefanos, Iatsunskyi Igor, Farid Ghulam, Jancelewicz Mariusz, Amade-Rovira Roger, Bertran-Serra Enric, Coy Emerson

机构信息

NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland.

Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, 08028 Barcelona, Catalunya, Spain.

出版信息

ACS Appl Mater Interfaces. 2025 Jun 11;17(23):34504-34512. doi: 10.1021/acsami.5c03529. Epub 2025 May 29.

Abstract

The use of photocatalytic hydrogen evolution depends on the availability of an efficient photocatalyst. This experiment aimed to create a type-II heterojunction between silicon nanowires and titanium dioxide bridged by a biomimetic polydopamine layer for efficient photocatalytic hydrogen production. This delivered adhesion, mechanical durability, outstanding wettability, and effective transfer of photogenerated charge carriers. Electron microscopy provided insight into the morphology and integration of the nanocoatings, while X-ray photoelectron spectroscopy confirmed the chemical structure of the nanocomposite before and after photocatalytic tests. These included voltammetric and impedance spectroscopy studies under UV-vis irradiation, which revealed a significant and stable photocurrent (up to 300 μA cm) and facilitated electron transfer through the hybrid photocatalyst. Finally, we composed a band diagram of the obtained remote heterojunction, which allowed us to understand its operation principles. We believe this approach provides a different perspective on type-II heterojunctions and allows for further development of the band alignment strategies.

摘要

光催化析氢的应用取决于高效光催化剂的可用性。本实验旨在通过仿生聚多巴胺层在硅纳米线和二氧化钛之间形成II型异质结,以实现高效的光催化产氢。这实现了附着力、机械耐久性、出色的润湿性以及光生电荷载流子的有效转移。电子显微镜提供了对纳米涂层形态和整合情况的深入了解,而X射线光电子能谱证实了光催化测试前后纳米复合材料的化学结构。这些研究包括紫外-可见光照下的伏安法和阻抗谱研究,结果显示出显著且稳定的光电流(高达300 μA/cm²),并促进了电子通过混合光催化剂的转移。最后,我们绘制了所得远程异质结的能带图,这使我们能够理解其工作原理。我们相信这种方法为II型异质结提供了不同的视角,并允许进一步开发能带排列策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a43b/12163933/6b98a424a66b/am5c03529_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验