Tamir Tigist Y, Chaudhary Shreya, Li Annie X, Trojan Sonia E, Flower Cameron T, Vo Paula, Cui Yufei, Davis Jeffrey C, Mukkamala Rachit, Venditti Francesca N, Hillis Alissandra L, Toker Alex, Vander Heiden Matthew G, Spinelli Jessica B, Kennedy Norman J, Davis Roger J, White Forest M
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
Mol Cell. 2025 Jun 5;85(11):2211-2229.e8. doi: 10.1016/j.molcel.2025.05.007. Epub 2025 May 28.
Coordination of adaptive metabolism through signaling networks is essential for cellular bioenergetics and homeostasis. Phosphorylation of metabolic enzymes provides a rapid, efficient, and dynamic mechanism to regulate metabolic networks. Our structural analysis stratified phosphosites on metabolic enzymes based on proximity to functional and dimerization domains. Most phosphosites occur on oxidoreductases and are enriched near substrate, cofactor, active sites, or dimer interfaces. Despite low stoichiometry, phosphotyrosine (pY) is overrepresented in functional domains. Using high-fat diet (HFD)-induced obesity in C57BL/6J mice and multiomics, we measured HFD-induced sex-specific dysregulation of pY and metabolites, which was reversible with the antioxidant butylated hydroxyanisole (BHA). Computational modeling revealed predictive pY sites for HFD- or BHA-induced metabolite changes. We characterized functional roles for predictive pY sites on glutathione S-transferase pi 1 (GSTP1), isocitrate dehydrogenase 1 (IDH1), and uridine monophosphate synthase (UMPS) using CRISPR interference (CRISPRi) rescue and stable isotope tracing. Our findings reveal mechanisms whereby cellular signaling fine-tunes enzyme activity and metabolism.
通过信号网络协调适应性代谢对于细胞生物能量学和体内平衡至关重要。代谢酶的磷酸化提供了一种快速、高效且动态的机制来调节代谢网络。我们的结构分析根据与功能域和二聚化域的接近程度对代谢酶上的磷酸化位点进行了分层。大多数磷酸化位点出现在氧化还原酶上,并且在底物、辅因子、活性位点或二聚体界面附近富集。尽管化学计量比很低,但磷酸酪氨酸(pY)在功能域中占比过高。利用高脂饮食(HFD)诱导C57BL/6J小鼠肥胖并进行多组学分析,我们测量了HFD诱导的pY和代谢物的性别特异性失调,而抗氧化剂丁基羟基茴香醚(BHA)可使其逆转。计算模型揭示了HFD或BHA诱导的代谢物变化的预测性pY位点。我们使用CRISPR干扰(CRISPRi)拯救和稳定同位素示踪法对谷胱甘肽S-转移酶pi 1(GSTP1)、异柠檬酸脱氢酶1(IDH1)和尿苷单磷酸合酶(UMPS)上预测性pY位点的功能作用进行了表征。我们的研究结果揭示了细胞信号微调酶活性和代谢的机制。