Abdelfadeel Mohamed A, Al Kiey Sherief A, Hesemann Peter, Mehdi Ahmad, Kamel Samir, El-Ziaty Ahmed K, El-Sayed Naglaa Salem
ICGM, University of Montpellier-CNRS-ENSCM, Montpellier, France; Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
Electrochemistry and Corrosion Lab, Physical Chemistry Department, National Research Centre, Egypt; Material Engineering Lab, Central Laboratories Network, National Research Centre, Egypt.
Int J Biol Macromol. 2025 Jun;316(Pt 2):144703. doi: 10.1016/j.ijbiomac.2025.144703. Epub 2025 May 27.
We report bio-sourced electrically conductive materials derived from sugarcane bagasse cellulose. First, the cellulose was chemically transformed into carboxymethyl cellulose (CMC). Acrylamide (AM) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) were co-polymerized with CMC, and the resulting material was cross-linked with N,N`-methylenebisacrylamide (MBA) to improve its mechanical properties. To further enhance the electrical performance, the materials were modified with reduced graphene oxide (rGO), nickel oxide (NiO) nanoparticles and rGO@NiO composites. The nanocomposites were then used as electrodes for solid-state supercapacitors. To evaluate the electrochemical properties of these materials, cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) were performed. These results demonstrate enhanced electrochemical performance of the composite material modified with both rGO and NiO NPs. CV profiles exhibited well-defined redox peaks indicative of reversible faradaic processes, confirming high pseudocapacitance contributions. The optimized sample X exhibited a high specific capacitance of 497.8 F g at 0.5 A g, outstanding cycling stability with 91 % capacitance retention after 5000 cycles, and a maximum energy density of 44.2 Wh kg at a power density of 226.2 W kg. EIS revealed low charge transfer resistance and efficient ion transport. These results underscore the potential of CMC/rGO/NiO composites as sustainable, high-performance electrode materials for next-generation supercapacitors.
我们报道了源自甘蔗渣纤维素的生物基导电材料。首先,将纤维素化学转化为羧甲基纤维素(CMC)。丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙烷磺酸(AMPS)与CMC共聚,所得材料与N,N'-亚甲基双丙烯酰胺(MBA)交联以改善其机械性能。为了进一步提高电性能,用还原氧化石墨烯(rGO)、氧化镍(NiO)纳米颗粒和rGO@NiO复合材料对材料进行改性。然后将这些纳米复合材料用作固态超级电容器的电极。为了评估这些材料的电化学性能,进行了循环伏安法(CV)、恒电流充放电(GCD)和电化学阻抗谱(EIS)测试。这些结果表明,用rGO和NiO纳米颗粒改性的复合材料具有增强的电化学性能。CV曲线显示出明确的氧化还原峰,表明存在可逆的法拉第过程,证实了高赝电容贡献。优化后的样品X在0.5 A g下具有497.8 F g的高比电容,在5000次循环后具有91%的电容保持率,具有出色的循环稳定性,在功率密度为226.2 W kg时的最大能量密度为44.2 Wh kg。EIS显示出低电荷转移电阻和高效的离子传输。这些结果强调了CMC/rGO/NiO复合材料作为下一代超级电容器可持续、高性能电极材料的潜力。