Yamanaka Yoshihiro, Hamidi Sofiane, Yoshioka-Kobayashi Kumiko, Munira Sirajam, Sunadome Kazunori, Zhang Yi, Kurokawa Yuzuru, Ericsson Rolf, Mieda Ai, Thompson Jamie L, Kerwin Janet, Lisgo Steven, Yamamoto Takuya, Moris Naomi, Martinez-Arias Alfonso, Tsujimura Taro, Alev Cantas
Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
Nature. 2023 Feb;614(7948):509-520. doi: 10.1038/s41586-022-05649-2. Epub 2022 Dec 21.
The segmented body plan of vertebrates is established during somitogenesis, a well-studied process in model organisms; however, the details of this process in humans remain largely unknown owing to ethical and technical limitations. Despite recent advances with pluripotent stem cell-based approaches, models that robustly recapitulate human somitogenesis in both space and time remain scarce. Here we introduce a pluripotent stem cell-derived mesoderm-based 3D model of human segmentation and somitogenesis-which we termed 'axioloid'-that captures accurately the oscillatory dynamics of the segmentation clock and the morphological and molecular characteristics of sequential somite formation in vitro. Axioloids show proper rostrocaudal patterning of forming segments and robust anterior-posterior FGF-WNT signalling gradients and retinoic acid signalling components. We identify an unexpected critical role of retinoic acid signalling in the stabilization of forming segments, indicating distinct, but also synergistic effects of retinoic acid and extracellular matrix on the formation and epithelialization of somites. Comparative analysis demonstrates marked similarities of axioloids to the human embryo, further validated by the presence of a Hox code in axioloids. Finally, we demonstrate the utility of axioloids for studying the pathogenesis of human congenital spine diseases using induced pluripotent stem cells with mutations in HES7 and MESP2. Our results indicate that axioloids represent a promising platform for the study of axial development and disease in humans.
脊椎动物的分节身体计划在体节发生过程中确立,这是在模式生物中得到充分研究的过程;然而,由于伦理和技术限制,该过程在人类中的细节仍 largely 未知。尽管基于多能干细胞的方法最近取得了进展,但能够在空间和时间上有力地重现人类体节发生的模型仍然很少。在这里,我们介绍了一种基于多能干细胞衍生中胚层的人类分节和体节发生的 3D 模型——我们称之为“轴状体”——它能在体外准确捕捉分节时钟的振荡动力学以及连续体节形成的形态和分子特征。轴状体显示出形成节段的正确头尾模式以及强大的前后 FGF-WNT 信号梯度和视黄酸信号成分。我们确定了视黄酸信号在稳定形成节段中的意外关键作用,表明视黄酸和细胞外基质对体节形成和上皮化具有不同但也协同的作用。比较分析表明轴状体与人类胚胎有显著相似性,轴状体中存在 Hox 编码进一步验证了这一点。最后,我们证明了轴状体在使用具有 HES7 和 MESP2 突变的诱导多能干细胞研究人类先天性脊柱疾病发病机制方面的效用。我们的结果表明,轴状体代表了一个有前途的平台,用于研究人类的轴向发育和疾病。