Matetskiy Andrey V, Barla Alessandro, Moras Paolo, Carbone Carlo, Milotti Valeria, Brondin Carlo Alberto, Benher Zipporah Rini, Holub Mariia, Ohresser Philippe, Otero Edwige, Choueikani Fadi, Shvets Igor A, Mihalyuk Alexey N, Eremeev Sergey V, Sheverdyaeva Polina M
CNR-Istituto di Struttura della Materia (CNR-ISM), Strada Statale 14, km 163.5, 34149 Trieste, Italy.
Peter Grünberg Institute (PGI-3), 52428 Forschungszentrum Jülich, Germany.
ACS Nano. 2025 Jun 10;19(22):20863-20870. doi: 10.1021/acsnano.5c03331. Epub 2025 May 29.
Magnetic order engineering in two-dimensional Dirac systems is of great interest for theoretical and technological exploration. Up to now, the experimental advances in this field mostly concerned graphene monolayers. Here, we report a comprehensive study of a monolayer-thick germanene-like sheet in contact with gadolinium atoms. Direct observations supported by first-principles calculations reveal the fingerprints of the Dirac fermions in the electronic structure and noncollinear antiferromagnetism. The hybridization of the germanene layer with Gd atoms leads to a large and tunable gap in the Dirac states that carry a nonzero spin-Berry curvature. We discovered that cesium-induced controlled electron doping can switch the system into a ferromagnetic state and then back to the antiferromagnetism at saturated cesium monolayer limit. We explain these reversible magnetic transitions by the oscillatory behavior of the Ruderman-Kittel-Kasuya-Yosida interaction and suggest that this system could find application in magnetoelectronics and spintronics.
二维狄拉克系统中的磁序工程对于理论和技术探索具有极大的吸引力。到目前为止,该领域的实验进展主要涉及石墨烯单原子层。在此,我们报告了一项关于与钆原子接触的单层类锗烯薄片的全面研究。第一性原理计算支持的直接观测揭示了电子结构中狄拉克费米子的特征以及非共线反铁磁性。锗烯层与钆原子的杂化导致了狄拉克态中一个大的且可调节的能隙,该能隙具有非零的自旋 - 贝里曲率。我们发现铯诱导的可控电子掺杂可将系统转变为铁磁态,然后在饱和铯单原子层极限下又回到反铁磁性。我们通过鲁德曼 - 基特尔 - 卡苏亚 - 约西达相互作用的振荡行为来解释这些可逆的磁转变,并表明该系统可在磁电子学和自旋电子学中得到应用。