Suppr超能文献

发射宽带涡旋光束的量子点发光二极管。

Quantum dot LEDs emitting broadband vortex beams.

作者信息

Boulliard Guillaume, Roland Iännis, Schanne Domitille, Petolat Marie, Filloux Pascal, Lhuillier Emmanuel, Degiron Aloyse

机构信息

Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, France.

Sorbonne Université, CNRS, Institut des NanoSciences de Paris, Paris, France.

出版信息

Nat Commun. 2025 May 29;16(1):4974. doi: 10.1038/s41467-025-60336-w.

Abstract

The past few years have witnessed impressive developments in optical sources capable of emitting structured forms of light, such as optical vortices or vector beams. Because structured beams result from carefully engineered interferences, their synthesis requires coherent light and all the sources demonstrated so far rely on coherent lasing cavities-usually pumped with external optical schemes. Here, we introduce non-lasing sources emitting directional vortex beams upon electrical injection. Their architecture consists of colloidal PbS quantum dot LEDs that integrate a photonic environment with two complementary functions: to make the emitters populate radial photonic modes with extended spatial coherence, and to structure the leakage of these modes into free space. Our electrically-pumped sources exhibit phase singularities across the electroluminescence spectrum of the quantum dots, leading to vortex light emission with a bandwidth of 300 nm in the near-infrared.

摘要

在过去几年中,能够发射结构化光形式(如光学涡旋或矢量光束)的光源取得了令人瞩目的进展。由于结构化光束是由精心设计的干涉产生的,它们的合成需要相干光,并且迄今为止展示的所有光源都依赖于相干激光腔——通常由外部光学方案泵浦。在这里,我们介绍了通过电注入发射定向涡旋光束的非激光光源。它们的结构由胶体硫化铅量子点发光二极管组成,该二极管集成了具有两种互补功能的光子环境:使发射器填充具有扩展空间相干性的径向光子模式,并将这些模式的泄漏结构化到自由空间中。我们的电泵浦光源在量子点的电致发光光谱中表现出相位奇点,导致在近红外波段具有300纳米带宽的涡旋光发射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a779/12122666/8c45f3710bc5/41467_2025_60336_Fig1_HTML.jpg

相似文献

1
Quantum dot LEDs emitting broadband vortex beams.
Nat Commun. 2025 May 29;16(1):4974. doi: 10.1038/s41467-025-60336-w.
2
Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns.
ACS Nano. 2020 Mar 24;14(3):3426-3433. doi: 10.1021/acsnano.9b09466. Epub 2020 Feb 12.
3
Solid-State Thin-Film Broadband Short-Wave Infrared Light Emitters.
Adv Mater. 2020 Nov;32(45):e2003830. doi: 10.1002/adma.202003830. Epub 2020 Sep 30.
4
Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity.
Nat Commun. 2020 Jan 14;11(1):271. doi: 10.1038/s41467-019-14014-3.
5
Colloidal Quantum Dot Light Emitting Diodes at Telecom Wavelength with 18% Quantum Efficiency and Over 1 MHz Bandwidth.
Adv Sci (Weinh). 2022 Jul;9(20):e2200637. doi: 10.1002/advs.202200637. Epub 2022 May 4.
6
Near-infrared and mid-infrared semiconductor broadband light emitters.
Light Sci Appl. 2018 Mar 23;7:17170. doi: 10.1038/lsa.2017.170. eCollection 2018.
7
Tunable vector-vortex beam optical parametric oscillator.
Sci Rep. 2019 Jul 3;9(1):9578. doi: 10.1038/s41598-019-46016-y.
9
Light-emitting quantum dot transistors: emission at high charge carrier densities.
Nano Lett. 2015 Mar 11;15(3):1822-8. doi: 10.1021/nl504582d. Epub 2015 Feb 5.

本文引用的文献

1
Metasurface Light-Emitting Diodes with Directional and Focused Emission.
Nano Lett. 2023 Nov 22;23(22):10505-10511. doi: 10.1021/acs.nanolett.3c03272. Epub 2023 Nov 13.
2
Light extraction from quantum dot light emitting diodes by multiscale nanostructures.
Nanoscale Adv. 2020 Mar 25;2(5):1967-1972. doi: 10.1039/d0na00150c. eCollection 2020 May 19.
3
Mid-infrared HgTe Colloidal Quantum Dot LEDs.
ACS Nano. 2022 May 24;16(5):7301-7308. doi: 10.1021/acsnano.2c01694. Epub 2022 Mar 29.
4
Room-temperature on-chip orbital angular momentum single-photon sources.
Sci Adv. 2022 Jan 14;8(2):eabk3075. doi: 10.1126/sciadv.abk3075. Epub 2022 Jan 12.
5
Light-emitting metalenses and meta-axicons for focusing and beaming of spontaneous emission.
Nat Commun. 2021 Jun 14;12(1):3591. doi: 10.1038/s41467-021-23433-0.
6
Efficient and stable blue quantum dot light-emitting diode.
Nature. 2020 Oct;586(7829):385-389. doi: 10.1038/s41586-020-2791-x. Epub 2020 Oct 14.
7
Nanoplatelet-Based Light-Emitting Diode and Its Use in All-Nanocrystal LiFi-like Communication.
ACS Appl Mater Interfaces. 2020 May 13;12(19):22058-22065. doi: 10.1021/acsami.0c05264. Epub 2020 Apr 29.
8
Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns.
ACS Nano. 2020 Mar 24;14(3):3426-3433. doi: 10.1021/acsnano.9b09466. Epub 2020 Feb 12.
9
Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent.
Nature. 2018 Oct;562(7726):245-248. doi: 10.1038/s41586-018-0575-3. Epub 2018 Oct 10.
10
Flexible inorganic light emitting diodes based on semiconductor nanowires.
Chem Sci. 2017 Dec 1;8(12):7904-7911. doi: 10.1039/c7sc02573d. Epub 2017 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验