Suppr超能文献

发光量子点晶体管:高电荷载流子密度下的发射

Light-emitting quantum dot transistors: emission at high charge carrier densities.

作者信息

Schornbaum Julia, Zakharko Yuriy, Held Martin, Thiemann Stefan, Gannott Florentina, Zaumseil Jana

机构信息

Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg , D-91058 Erlangen, Germany.

出版信息

Nano Lett. 2015 Mar 11;15(3):1822-8. doi: 10.1021/nl504582d. Epub 2015 Feb 5.

Abstract

For the application of colloidal semiconductor quantum dots in optoelectronic devices, for example, solar cells and light-emitting diodes, it is crucial to understand and control their charge transport and recombination dynamics at high carrier densities. Both can be studied in ambipolar, light-emitting field-effect transistors (LEFETs). Here, we report the first quantum dot light-emitting transistor. Electrolyte-gated PbS quantum dot LEFETs exhibit near-infrared electroluminescence from a confined region within the channel, which proves true ambipolar transport in ligand-exchanged quantum dot solids. Unexpectedly, the external quantum efficiencies improve significantly with current density. This effect correlates with the unusual increase of photoluminescence quantum yield and longer average lifetimes at higher electron and hole concentrations in PbS quantum dot thin films. We attribute the initially low emission efficiencies to nonradiative losses through trap states. At higher carrier densities, these trap states are deactivated and emission is dominated by trions.

摘要

对于胶体半导体量子点在光电器件(例如太阳能电池和发光二极管)中的应用而言,了解并控制其在高载流子密度下的电荷传输和复合动力学至关重要。这两者均可在双极性发光场效应晶体管(LEFET)中进行研究。在此,我们报道了首个量子点发光晶体管。电解质栅控PbS量子点LEFET在沟道内的受限区域表现出近红外电致发光,这证明了配体交换量子点固体中真正的双极性传输。出乎意料的是,外部量子效率随电流密度显著提高。这种效应与PbS量子点薄膜中较高电子和空穴浓度下光致发光量子产率的异常增加以及更长的平均寿命相关。我们将最初较低的发射效率归因于通过陷阱态的非辐射损失。在较高载流子密度下,这些陷阱态失活,发射由三重态主导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ab/4358076/4ffbe23797bd/nl-2014-04582d_0001.jpg

相似文献

1
Light-emitting quantum dot transistors: emission at high charge carrier densities.
Nano Lett. 2015 Mar 11;15(3):1822-8. doi: 10.1021/nl504582d. Epub 2015 Feb 5.
2
Electroluminescence Generation in PbS Quantum Dot Light-Emitting Field-Effect Transistors with Solid-State Gating.
ACS Nano. 2018 Dec 26;12(12):12805-12813. doi: 10.1021/acsnano.8b07938. Epub 2018 Dec 14.
3
Enhancing the Performance of CdSe/CdS Dot-in-Rod Light-Emitting Diodes via Surface Ligand Modification.
ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5665-5672. doi: 10.1021/acsami.7b18780. Epub 2018 Feb 5.
5
Cesium Lead Bromide Quantum Dot Light-Emitting Field-Effect Transistors.
ACS Appl Mater Interfaces. 2020 May 13;12(19):21944-21951. doi: 10.1021/acsami.0c06904. Epub 2020 May 1.
6
High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level.
Nat Nanotechnol. 2019 Jan;14(1):72-79. doi: 10.1038/s41565-018-0312-y. Epub 2018 Dec 3.
7
Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.
Nat Nanotechnol. 2012 May 6;7(6):369-73. doi: 10.1038/nnano.2012.63.
8
Carbon quantum dot-based field-effect transistors and their ligand length-dependent carrier mobility.
ACS Appl Mater Interfaces. 2013 Feb;5(3):822-7. doi: 10.1021/am3023898. Epub 2013 Jan 29.
9
10
CHNHPbBr Quantum Dot-Induced Nucleation for High Performance Perovskite Light-Emitting Solar Cells.
ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22320-22328. doi: 10.1021/acsami.8b06595. Epub 2018 Jun 22.

引用本文的文献

1
Precursor Chemistry Enables the Surface Ligand Control of PbS Quantum Dots for Efficient Photovoltaics.
Adv Sci (Weinh). 2023 Feb;10(4):e2204655. doi: 10.1002/advs.202204655. Epub 2022 Nov 16.
2
A study of the density of states of ZnCoO:H from resistivity measurements.
RSC Adv. 2018 Mar 8;8(18):9895-9900. doi: 10.1039/c7ra12866e. eCollection 2018 Mar 5.
3
Cu-Cd-Zn-S/ZnS core/shell quantum dot/polyvinyl alcohol flexible films for white light-emitting diodes.
RSC Adv. 2020 Jun 26;10(41):24425-24433. doi: 10.1039/d0ra03540h. eCollection 2020 Jun 24.
4
On the Colloidal Stability of PbS Quantum Dots Capped with Methylammonium Lead Iodide Ligands.
ACS Appl Mater Interfaces. 2020 Nov 25;12(47):52959-52966. doi: 10.1021/acsami.0c16646. Epub 2020 Nov 11.
5
Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors.
ACS Appl Mater Interfaces. 2020 Jul 15;12(28):31591-31600. doi: 10.1021/acsami.0c06306. Epub 2020 Jul 6.
6
Electroluminescence Generation in PbS Quantum Dot Light-Emitting Field-Effect Transistors with Solid-State Gating.
ACS Nano. 2018 Dec 26;12(12):12805-12813. doi: 10.1021/acsnano.8b07938. Epub 2018 Dec 14.
7
Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal.
ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5626-5632. doi: 10.1021/acsami.7b16882. Epub 2018 Feb 2.
8
Enabling Ambipolar to Heavy n-Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules.
ACS Appl Mater Interfaces. 2017 May 31;9(21):18039-18045. doi: 10.1021/acsami.7b02867. Epub 2017 May 16.
9
Broadening of Distribution of Trap States in PbS Quantum Dot Field-Effect Transistors with High-k Dielectrics.
ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4719-4724. doi: 10.1021/acsami.6b14934. Epub 2017 Jan 27.
10
Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities.
ACS Photonics. 2016 Dec 21;3(12):2225-2230. doi: 10.1021/acsphotonics.6b00491. Epub 2016 Nov 9.

本文引用的文献

1
Trion electroluminescence from semiconducting carbon nanotubes.
ACS Nano. 2014 Aug 26;8(8):8477-86. doi: 10.1021/nn503046y. Epub 2014 Jul 16.
2
Auger recombination of biexcitons and negative and positive trions in individual quantum dots.
ACS Nano. 2014 Jul 22;8(7):7288-96. doi: 10.1021/nn5023473. Epub 2014 Jun 18.
3
Improved performance and stability in quantum dot solar cells through band alignment engineering.
Nat Mater. 2014 Aug;13(8):796-801. doi: 10.1038/nmat3984. Epub 2014 May 25.
4
Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control.
ACS Nano. 2014 Jun 24;8(6):6363-71. doi: 10.1021/nn5018654. Epub 2014 May 23.
5
Electrically switchable chiral light-emitting transistor.
Science. 2014 May 16;344(6185):725-8. doi: 10.1126/science.1251329. Epub 2014 Apr 17.
7
The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.
Annu Rev Phys Chem. 2014;65:317-39. doi: 10.1146/annurev-physchem-040513-103649. Epub 2013 Dec 20.
8
Small bright charged colloidal quantum dots.
ACS Nano. 2014 Jan 28;8(1):283-91. doi: 10.1021/nn403893b. Epub 2013 Dec 18.
9
Mapping charge transport by electroluminescence in chirality-selected carbon nanotube networks.
ACS Nano. 2013 Aug 27;7(8):7428-35. doi: 10.1021/nn403419d. Epub 2013 Aug 5.
10
A microscopic picture of surface charge trapping in semiconductor nanocrystals.
J Chem Phys. 2013 May 28;138(20):204705. doi: 10.1063/1.4807054.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验