Suppr超能文献

在原子长度尺度上通过非线性光谱可视化热载流子动力学。

Visualizing hot carrier dynamics by nonlinear optical spectroscopy at the atomic length scale.

作者信息

Luo Yang, Sheng Shaoxiang, Schirato Andrea, Martin-Jimenez Alberto, Della Valle Giuseppe, Cerullo Giulio, Kern Klaus, Garg Manish

机构信息

Max Planck Institute for Solid State Research, Stuttgart, Germany.

Dipartimento di Fisica, Politecnico di Milano, Milano, Italy.

出版信息

Nat Commun. 2025 May 29;16(1):4999. doi: 10.1038/s41467-025-60384-2.

Abstract

Probing and manipulating the spatiotemporal dynamics of hot carriers in nanoscale metals is crucial to a plethora of applications ranging from nonlinear nanophotonics to single-molecule photochemistry. The direct investigation of these highly non-equilibrium carriers requires the experimental capability of high energy-resolution (~ meV) broadband femtosecond spectroscopy. When considering the ultimate limits of atomic-scale structures, this capability has remained out of reach until date. Using a two-color femtosecond pump-probe spectroscopy, we present here the real-time tracking of hot carrier dynamics in a well-defined plasmonic picocavity, formed in the tunnel junction of a scanning tunneling microscope (STM). The excitation of hot carriers in the picocavity enables ultrafast all-optical control over the broadband (~ eV) anti-Stokes electronic resonance Raman scattering (ERRS) and the four-wave mixing (FWM) signals generated at the atomic length scale. By mapping the ERRS and FWM signals from a single graphene nanoribbon (GNR), we demonstrate that both signals are more efficiently generated along the edges of the GNR - a manifestation of atomic-scale nonlinear optical microscopy.

摘要

探测和操纵纳米级金属中热载流子的时空动力学对于从非线性纳米光子学到单分子光化学等众多应用至关重要。对这些高度非平衡载流子的直接研究需要高能量分辨率(毫电子伏特)宽带飞秒光谱的实验能力。考虑到原子尺度结构的极限,这种能力迄今为止仍遥不可及。利用双色飞秒泵浦 - 探测光谱,我们在此展示了在扫描隧道显微镜(STM)隧道结中形成的明确等离子体皮秒腔内热载流子动力学的实时跟踪。皮秒腔内热载流子的激发能够对在原子长度尺度上产生的宽带(电子伏特)反斯托克斯电子共振拉曼散射(ERRS)和四波混频(FWM)信号进行超快全光控制。通过绘制来自单个石墨烯纳米带(GNR)的ERRS和FWM信号,我们证明这两种信号沿着GNR的边缘更有效地产生——这是原子尺度非线性光学显微镜的一种表现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验