Suppr超能文献

代谢先天性缺陷的下一代多尺度视角

A Next Generation Multiscale View of Inborn Errors of Metabolism.

作者信息

Argmann Carmen A, Houten Sander M, Zhu Jun, Schadt Eric E

机构信息

Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.

Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.

出版信息

Cell Metab. 2016 Jan 12;23(1):13-26. doi: 10.1016/j.cmet.2015.11.012. Epub 2015 Dec 17.

Abstract

Inborn errors of metabolism (IEM) are not unlike common diseases. They often present as a spectrum of disease phenotypes that correlates poorly with the severity of the disease-causing mutations. This greatly impacts patient care and reveals fundamental gaps in our knowledge of disease modifying biology. Systems biology approaches that integrate multi-omics data into molecular networks have significantly improved our understanding of complex diseases. Similar approaches to study IEM are rare despite their complex nature. We highlight that existing common disease-derived datasets and networks can be repurposed to generate novel mechanistic insight in IEM and potentially identify candidate modifiers. While understanding disease pathophysiology will advance the IEM field, the ultimate goal should be to understand per individual how their phenotype emerges given their primary mutation on the background of their whole genome, not unlike personalized medicine. We foresee that panomics and network strategies combined with recent experimental innovations will facilitate this.

摘要

先天性代谢缺陷(IEM)与常见疾病并无不同。它们常常表现为一系列疾病表型,这些表型与致病突变的严重程度相关性较差。这对患者护理产生了极大影响,并揭示了我们在疾病修饰生物学知识方面的根本差距。将多组学数据整合到分子网络中的系统生物学方法显著提高了我们对复杂疾病的理解。尽管IEM具有复杂性,但采用类似方法来研究IEM的情况却很少见。我们强调,现有的源自常见疾病的数据集和网络可以重新利用,以在IEM中产生新的机制性见解,并有可能识别候选修饰因子。虽然理解疾病病理生理学将推动IEM领域的发展,但最终目标应该是了解每个个体在其全基因组背景下,鉴于其原发性突变,其表型是如何出现的,这与个性化医疗并无不同。我们预见,泛组学和网络策略与近期的实验创新相结合将有助于实现这一目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7771/4715559/568b17cb108f/nihms-741497-f0001.jpg

相似文献

1
A Next Generation Multiscale View of Inborn Errors of Metabolism.代谢先天性缺陷的下一代多尺度视角
Cell Metab. 2016 Jan 12;23(1):13-26. doi: 10.1016/j.cmet.2015.11.012. Epub 2015 Dec 17.

引用本文的文献

10
OMICS Approaches Evaluating Keloid and Hypertrophic Scars.评估瘢痕疙瘩和增生性瘢痕的组学方法。
Int J Inflam. 2022 Oct 27;2022:1490492. doi: 10.1155/2022/1490492. eCollection 2022.

本文引用的文献

7
Quantitative and logic modelling of molecular and gene networks.分子和基因网络的定量与逻辑建模。
Nat Rev Genet. 2015 Mar;16(3):146-58. doi: 10.1038/nrg3885. Epub 2015 Feb 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验