Suppr超能文献

COVID-19各阶段及康复过程的综合转录组分析:通过机器学习洞察关键基因特征、免疫特性及诊断生物标志物

Integrated transcriptomic analysis of COVID-19 stages and recovery: insights into key gene signatures, immune features, and diagnostic biomarkers through machine learning.

作者信息

Gong Zhiyuan, An He

机构信息

School of Medical Technology, Tianjin Medical University, Tianjin, China.

Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.

出版信息

Front Genet. 2025 May 15;16:1599867. doi: 10.3389/fgene.2025.1599867. eCollection 2025.

Abstract

BACKGROUND

COVID-19 progression and recovery involve complex gene expression changes and immune dysregulation, but their dynamic alterations remain poorly understood. Current clinical indicators lack precision in distinguishing severe cases, highlighting the need for molecular biomarkers and diagnostic tools.

METHODS

Three transcriptomic datasets were analyzed: 1) COVID-19 progression from Healthy, Moderate, Severe, to ICU patients; 2) recovery stages (1, 3, and 6 months) compared to Healthy controls; and 3) COVID-19 ICU versus non-ICU patients. Differential expression analysis, immune cell infiltration estimation, machine learning (LASSO regression and random forest), and functional enrichment were used to identify key genes and molecular mechanisms.

RESULTS

Gene expression analysis revealed dynamic changes during COVID-19 progression. Adaptive immune cells (e.g., B cells and T cells) decreased, while innate immune cells (e.g., monocytes and neutrophils) increased, particularly in ICU patients. Recovery analysis showed significantly reduced adaptive immune cells at 1 month, with partial recovery by 3 and 6 months. Machine learning identified CCR5, CYSLTR1, and KLRG1 as diagnostic biomarkers for distinguishing ICU from non-ICU patients, with AUC values of 0.916, 0.885, and 0.899, respectively.

CONCLUSION

This study identified CCR5, CYSLTR1, and KLRG1 as efficient diagnostic biomarkers for severe COVID-19 using machine learning and revealed immune regulatory features across COVID-19 progression and recovery.

摘要

背景

新型冠状病毒肺炎(COVID-19)的进展和恢复涉及复杂的基因表达变化和免疫失调,但其动态变化仍知之甚少。目前的临床指标在区分重症病例方面缺乏准确性,凸显了对分子生物标志物和诊断工具的需求。

方法

分析了三个转录组数据集:1)从健康、中度、重度到重症监护病房(ICU)患者的COVID-19进展情况;2)与健康对照相比的恢复阶段(1、3和6个月);3)COVID-19 ICU患者与非ICU患者。采用差异表达分析、免疫细胞浸润估计、机器学习(套索回归和随机森林)和功能富集来识别关键基因和分子机制。

结果

基因表达分析揭示了COVID-19进展过程中的动态变化。适应性免疫细胞(如B细胞和T细胞)减少,而固有免疫细胞(如单核细胞和中性粒细胞)增加,尤其是在ICU患者中。恢复分析显示,1个月时适应性免疫细胞显著减少,3个月和6个月时部分恢复。机器学习确定CCR5、CYSLTR1和KLRG1为区分ICU患者和非ICU患者的诊断生物标志物,其曲线下面积(AUC)值分别为0.916、0.885和0.899。

结论

本研究利用机器学习确定CCR5、CYSLTR1和KLRG1为重症COVID-19的有效诊断生物标志物,并揭示了COVID-19进展和恢复过程中的免疫调节特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a21a/12119500/36a1706f025e/fgene-16-1599867-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验