Panek Johan, Carriere Eugenie, Saleh Moudy Bin, Sendra Kacper, Kosta Gregor, Korolchuk Viktor I, Hirt Robert P
Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, England, United Kingdom.
Laboratoire Microorganismes: Génome et Environnement, CNRS UMR 6023, Université Clermont Auvergne, Clermont-Ferrand, Auvergne-Rhône-Alpes, France.
mBio. 2025 Jul 9;16(7):e0104925. doi: 10.1128/mbio.01049-25. Epub 2025 May 30.
Intracellular pathogens such as Microsporidia can interfere with host proteostasis pathways, including autophagy. While the manipulation of host autophagy has been demonstrated in a nematode-infecting species, and autophagic activity was also observed in tardigrade midgut infections, it remains unclear whether this strategy extends to mammalian-infecting Microsporidia. Here, we investigated interactions between host autophagy and two human-pathogenic Microsporidian species representing distinct evolutionary lineages. Using immunochemistry, super-resolution fluorescence microscopy, and modulation of autophagy via siRNA silencing and chemical agents, we show that is tagged by early autophagy markers (ubiquitin and p62) but escapes clearance via autolysosomes. Instead of restricting the parasite, autophagy induction significantly enhances Microsporidia proliferation in two mammalian cell models. Conversely, autophagy suppression-via siRNA or treatment with microbiota-derived metabolites important for gut epithelial homeostasis-reduces parasite growth. These findings demonstrate that the ability to evade and exploit host autophagy is not restricted to nematode-infecting species but is conserved across diverse Microsporidia infecting mammals. Together with adaptations such as NTT nucleotide transporters, the hijacking of autophagy emerges as a core strategy supporting the obligate intracellular lifestyle of these pathogens.IMPORTANCEMicrosporidia are tiny parasites that must live inside other cells to survive. In animals like worms and tardigrades, they've been seen to interact with a cell's recycling system called autophagy, which usually helps the host defend itself. But what about Microsporidia that infect mammals, including humans? Our research shows that instead of being destroyed by autophagy, human-infecting Microsporidia use it to grow faster. We studied two different species in mammalian cells and found that when we boosted the host's autophagy system, the parasites multiplied more. When we slowed down autophagy, parasite growth dropped. This means that Microsporidia have evolved clever ways to turn the host's defences into a resource. Understanding how they do this could lead to better treatments for infections, especially for people with weakened immune systems. It also reveals a surprising twist in how these unusual parasites survive across a broad range of hosts.
诸如微孢子虫之类的细胞内病原体可干扰宿主的蛋白质稳态途径,包括自噬。虽然在一种感染线虫的微孢子虫物种中已证实其对宿主自噬的操控,并且在缓步动物中肠感染时也观察到了自噬活性,但这种策略是否适用于感染哺乳动物的微孢子虫仍不清楚。在此,我们研究了宿主自噬与代表不同进化谱系的两种人类致病微孢子虫物种之间的相互作用关系。通过免疫化学、超分辨率荧光显微镜以及经由小干扰RNA(siRNA)沉默和化学试剂对自噬进行调控,我们发现 被早期自噬标记物(泛素和p62)标记,但可通过自噬溶酶体逃脱清除。自噬诱导非但没有限制寄生虫生长,反而在两种哺乳动物细胞模型中显著增强了微孢子虫的增殖。相反地,通过siRNA或用对肠道上皮稳态重要的微生物群衍生代谢物进行处理来抑制自噬,则会减少寄生虫生长。这些发现表明,逃避和利用宿主自噬的能力并非仅限于感染线虫的物种,而是在感染哺乳动物的各种微孢子虫中都存在。与诸如NTT核苷酸转运体等适应性机制一起,自噬的劫持成为支持这些病原体专性细胞内生活方式的核心策略之一。
重要性
微孢子虫是微小的寄生虫,必须生活在其他细胞内才能存活。在蠕虫和缓步动物之类的动物中,它们已被观察到与一种名为自噬的细胞回收系统相互作用,而自噬通常有助于宿主进行自我防御,但感染包括人类在内的哺乳动物的微孢子虫情况如何呢?我们的研究表明:感染人类的微孢子虫非但没有被自噬摧毁反而是利用自噬来更快地生长繁殖。我们在哺乳动物细胞中研究了两种不同的物种,发现当我们增强宿主的自噬系统时,寄生虫繁殖得更多;当我们减缓自噬时,寄生虫生长速度下降。这意味着微孢子虫已经进化出巧妙方式将宿主防御转化为一种资源。了解它们如何做到这一点可能会带来更好的感染治疗方法,尤其是对免疫系统较弱的人。这也揭示了这些不寻常的寄生虫在广泛宿主中生存方式的一个惊人转变。