Leuthold David, Herold Nadia K, Nerlich Jana, Bartmann Kristina, Scharkin Ilka, Hallermann Stefan J, Schweiger Nicole, Fritsche Ellen, Tal Tamara
Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
Medical Faculty, Carl Ludwig Institute of Physiology, University of Leipzig, Leipzig, Germany.
Environ Health Perspect. 2025 May 30. doi: 10.1289/EHP16568.
The vertebrate nervous system is vulnerable to chemical toxicity and the widespread release of chemicals into the environment outstrips the capacity to assess their safety. The zebrafish () is a powerful vertebrate model that can bridge the gap between and mammalian-based studies. However, the behavior-rich repertoire of larval zebrafish, a 3R-compliant model amenable to higher-throughput chemical screens, has yet to be fully deployed to identify and characterize chemical compounds that cause neurotoxicity.
We sought to establish a multi-behavioral phenotyping approach in larval zebrafish to identify and mechanistically elucidate neuroactive chemicals, with particular focus on chemical compounds that affect non-associative habituation learning.
We devised a battery of automated behavior assays in larval zebrafish. The battery captures stereotypical visual and acoustic behaviors including habituation, a form of non-associative learning. To elucidate mechanisms underlying exposure-induced behavioral alterations in zebrafish, target predictions, pharmacological interventions, patch-clamp recordings in cultured mouse cortical neurons, and human multi-neurotransmitter (hMNR) assay in 3D BrainSpheres were used.
Known pharmacological modulators of habituation in zebrafish evoked distinct behavioral patterns. By screening chemicals positive for N-methyl-D-aspartate receptor (NMDAR) modulation, we identified chlorophene, a biocide that caused sedation, paradoxical excitation, and reduced habituation in zebrafish. Using target predictions and pharmacological interventions, we discovered that chlorophene acts via gamma-aminobutyric acid A receptors (GABARs), a previously unknown target site. Orthogonal validation in cultured mouse cortical neurons and human stem cell-derived BrainSpheres confirmed chlorophene's interaction with GABARs. Chlorophene's behavioral profile resembled that of flupirtine, a Kv7 potassium channel (M-current) activator, suggesting that habituation deficits stem from M-current rather than GABAR modulation.
These studies combined a series of behavior assays in a phenotypically rich, rapid, and inexpensive non-mammalian vertebrate test system to screen chemicals for neurotoxicity. Together with target predictions and mouse- and human-based models, our findings establish multi-behavioral phenotyping in zebrafish as a powerful toolkit for neurotoxicity testing and mechanism identification, with relevance for humans. https://doi.org/10.1289/EHP16568.
脊椎动物的神经系统易受化学毒性影响,而化学物质在环境中的广泛释放超出了评估其安全性的能力。斑马鱼是一种强大的脊椎动物模型,可弥合基于细胞和哺乳动物研究之间的差距。然而,幼体斑马鱼丰富的行为表现(一种适用于高通量化学筛选的符合3R原则的模型)尚未完全用于识别和表征导致神经毒性的化合物。
我们试图在幼体斑马鱼中建立一种多行为表型分析方法,以识别并从机制上阐明神经活性化学物质,特别关注影响非联想性习惯化学习的化合物。
我们设计了一系列针对幼体斑马鱼的自动化行为检测方法。该检测方法涵盖了刻板的视觉和听觉行为,包括习惯化(一种非联想性学习形式)。为了阐明斑马鱼暴露诱导行为改变的潜在机制,我们采用了靶点预测、药理学干预、培养的小鼠皮层神经元的膜片钳记录以及3D脑球中的人类多神经递质(hMNR)检测。
已知的斑马鱼习惯化药理学调节剂引发了不同的行为模式。通过筛选对N-甲基-D-天冬氨酸受体(NMDAR)调节呈阳性的化学物质,我们鉴定出了氯苯,一种杀生物剂,它会导致斑马鱼镇静、反常兴奋并降低习惯化。利用靶点预测和药理学干预,我们发现氯苯通过γ-氨基丁酸A受体(GABARs)起作用,这是一个此前未知的靶点。在培养的小鼠皮层神经元和人类干细胞衍生的脑球中的正交验证证实了氯苯与GABARs的相互作用。氯苯的行为特征类似于氟吡汀(一种Kv7钾通道(M电流)激活剂),这表明习惯化缺陷源于M电流而非GABAR调节。
这些研究在一个表型丰富、快速且廉价的非哺乳动物脊椎动物测试系统中结合了一系列行为检测方法,以筛选具有神经毒性的化学物质。结合靶点预测以及基于小鼠和人类的模型,我们的研究结果确立了斑马鱼中的多行为表型分析作为一种用于神经毒性测试和机制识别的强大工具,与人类相关。https://doi.org/10.1289/EHP16568。