Jamison Julia, Doman Thomas Jedidiah Jenks, Antenucci Zoe, Efromson John, Johnson Connor, Simonich Michael T, Harfouche Mark, Truong Lisa, Tanguay Robyn L
Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, 28645 E Hwy 34, Corvallis, OR 97333, USA.
Ramona Optics Inc., Durham, NC 27701, USA.
SLAS Technol. 2025 Aug;33:100310. doi: 10.1016/j.slast.2025.100310. Epub 2025 May 28.
Developing automated, high-throughput screening platforms for early-stage drug development and toxicology assessment requires robust model systems that can predict human responses. Zebrafish embryos have emerged as an ideal vertebrate model for this purpose due to their rapid development, genetic homology to humans, and amenability to high-throughput screening. However, existing commercial imaging platforms face significant technical limitations in capturing early developmental behaviors. We present the validation of the Kestrel™, a novel high-throughput imaging platform featuring a 24-camera array that enables simultaneous acquisition of high-resolution video data across 96-well plates. This system overcomes key technical limitations through its unique optical design and automated image processing pipeline. Unlike current commercial systems, which require specialized setup and can only image subsets of wells, the Kestrel provides comprehensive plate imaging at 9.6 µm resolution with 10+ Hz video capture across an 8 × 12 cm field of view. We validated the system using zebrafish embryonic photomotor response (EPR) assays, demonstrating its ability to track behavioral responses in chorionated and dechorionated embryos without workflow modifications. The system successfully detected concentration-dependent responses to ethanol, methanol, and bisphenol A across different plate formats and well volumes. Notably, the Kestrel enabled equivalent detection of behavioral responses in chorionated and dechorionated embryos, eliminating the need for the dechorionation process while maintaining assay sensitivity. This technological advancement provides a robust platform for high-throughput chemical screening in drug discovery and toxicology applications, offering significant improvements in throughput, sensitivity, and reproducibility with a highly relevant vertebrate model.
开发用于早期药物开发和毒理学评估的自动化高通量筛选平台需要能够预测人类反应的强大模型系统。斑马鱼胚胎因其发育迅速、与人类具有基因同源性且适合高通量筛选,已成为实现这一目的的理想脊椎动物模型。然而,现有的商业成像平台在捕捉早期发育行为方面面临重大技术限制。我们展示了Kestrel™的验证情况,这是一种新型高通量成像平台,具有24个相机阵列,能够同时采集96孔板的高分辨率视频数据。该系统通过其独特的光学设计和自动化图像处理流程克服了关键技术限制。与当前需要专门设置且只能对部分孔进行成像的商业系统不同,Kestrel能够在8×12厘米的视野范围内以9.6微米的分辨率和10赫兹以上的视频捕捉速率对整个板进行全面成像。我们使用斑马鱼胚胎光运动反应(EPR)试验对该系统进行了验证,证明其无需修改工作流程就能跟踪带卵壳和去卵壳胚胎的行为反应。该系统成功检测了不同板型和孔体积下对乙醇、甲醇和双酚A的浓度依赖性反应。值得注意的是,Kestrel能够等效检测带卵壳和去卵壳胚胎的行为反应,无需去卵壳过程,同时保持检测灵敏度。这一技术进步为药物发现和毒理学应用中的高通量化学筛选提供了一个强大的平台,在通量、灵敏度和可重复性方面有显著提高,且使用的是高度相关的脊椎动物模型。