Hori Koichiro, Suzuki Shinya, Hirota Naomi, Motogi Jun, Umemoto Takuya, Nakai Hiroshi, Matsuzawa Wataru, Takayanagi Tsuneo, Hyodo Akira, Satoh Keiichi, Arita Takuto, Yagi Naoharu, Kishi Mikio, Kano Hiroto, Matsuno Shunsuke, Kato Yuko, Otsuka Takayuki, Uejima Tokuhisa, Yajima Junji, Okumura Yasuo, Oikawa Yuji, Yamashita Takeshi
Department of Cardiovascular Medicine, The Cardiovascular Institute, Tokyo, Japan.
Department of Cardiovascular Medicine, The Cardiovascular Institute, Tokyo, Japan.
J Cardiol. 2025 May 29. doi: 10.1016/j.jjcc.2025.05.014.
Early and accurate diagnosis of acute coronary syndrome (ACS), particularly non-ST-elevation ACS (NSTE-ACS), remains a critical challenge in emergency settings. Despite advancements in diagnostic modalities, conventional electrographic (ECG) interpretation often fails to detect subtle ischemic changes, particularly in NSTE-ACS, highlighting the need for artificial intelligence (AI)-driven approaches.
This study retrospectively analyzed data from a single-center cohort (Shinken Database 2010-2022, n = 32,167) to develop AI-driven ECG models for ACS detection. A convolutional neural network (CNN) model and an integrated neural network (INN) model, which incorporated diagnostic probabilities for ACS subtypes and target vessels, were evaluated using area under the receiver operating characteristics curve (AUROC), area under the precision-recall curve (AUPRC), sensitivity, and F1 scores for all‑lead ECG and reduced‑lead ECG models.
The CNN model using all‑lead ECG achieved an AUROC of 0.877, an AUPRC of 0.391, and an F1 score of 0.184, while the INN model showed similar results (AUROC 0.889, AUPRC 0.356, and F1 score 0.188). For subtypes related to NSTE-ACS, the CNN model using all‑lead ECG (CNN model using double‑lead ECG) model achieved an AUROC of 0.785 (0.783), sensitivity of 0.723 (0.672), and specificity of 0.699 (0.768) for unstable angina, and an AUROC of 0.795 (0.786), sensitivity of 0.527 (0.567), and specificity of 0.878 (0.849) for NSTE-myocardial infarction. Among patients with troponin testing (n = 4169), the CNN model achieved a sensitivity of 76 %, a positive predictive rate (PPR) of 32 %, and an F1 score of 0.452, while the INN model achieved 78 %, 35 %, and 0.483, respectively. The leads I and II model demonstrated the highest AUROC among reduced‑lead models (0.866), with F1 scores in patients with troponin testing of 0.395 and 0.390 for the CNN and INN models, respectively.
Both CNN and INN-enhanced ECGs demonstrated good performance in detecting ACS including NSTE-ACS with subtle ischemic ECG changes. However, low PPR limit these models' standalone diagnostic utility. Instead, they hold promise as supportive tools, especially in resource-limited settings where reduced‑lead ECGs may be beneficial.
急性冠状动脉综合征(ACS),尤其是非ST段抬高型ACS(NSTE-ACS)的早期准确诊断,仍然是急诊环境中的一项关键挑战。尽管诊断方式有所进步,但传统的心电图(ECG)解读往往无法检测到细微的缺血性变化,尤其是在NSTE-ACS中,这凸显了人工智能(AI)驱动方法的必要性。
本研究回顾性分析了来自单中心队列(新金数据库2010 - 2022年,n = 32167)的数据,以开发用于ACS检测的AI驱动的ECG模型。使用所有导联ECG和简化导联ECG模型的受试者操作特征曲线下面积(AUROC)、精确召回率曲线下面积(AUPRC)、敏感性和F1分数,对结合了ACS亚型和目标血管诊断概率的卷积神经网络(CNN)模型和集成神经网络(INN)模型进行评估。
使用所有导联ECG的CNN模型的AUROC为0.877,AUPRC为0.391,F1分数为0.184,而INN模型显示出类似结果(AUROC 0.889,AUPRC 0.356,F1分数0.188)。对于与NSTE-ACS相关的亚型,使用所有导联ECG的CNN模型(使用双导联ECG的CNN模型)对不稳定型心绞痛的AUROC为0.785(0.783),敏感性为0.723(0.672),特异性为0.699(0.768),对NSTE-心肌梗死的AUROC为0.795(0.786),敏感性为0.527(0.567),特异性为0.878(0.849)。在进行肌钙蛋白检测的患者(n = 4169)中,CNN模型的敏感性为76%,阳性预测率(PPR)为32%,F-1分数为0.452,而INN模型分别为78%、35%和0.483。导联I和II模型在简化导联模型中显示出最高的AUROC(0.866),在进行肌钙蛋白检测的患者中,CNN模型和INN模型的F1分数分别为0.395和0.390。
CNN和INN增强的ECG在检测包括具有细微缺血性ECG变化的NSTE-ACS在内的ACS方面均表现出良好性能。然而,低PPR限制了这些模型的独立诊断效用。相反,它们有望作为辅助工具,特别是在资源有限的环境中,简化导联ECG可能有益。