Suppr超能文献

机器学习计算机视觉在超声心动图识别肥厚型心肌病中的床旁决策支持

Machine Learning Computer Vision Point of Care Decision Support of Echocardiographic Identification of Hypertrophic Cardiomyopathy.

作者信息

Vemulapalli Sreekanth, Alenezi Fawaz, Jeong Hyeon, Giczewska Anna, Chiswell Karen, Douglas Pamela, Zhang Anru R, Shah Svati, Henao Ricardo, Wang Andrew

机构信息

Duke Clinical Research Institute, Durham, North Carolina, USA; Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA.

Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA.

出版信息

JACC Adv. 2025 May;4(5):101746. doi: 10.1016/j.jacadv.2025.101746.

Abstract

BACKGROUND

Hypertrophic cardiomyopathy (HCM) remains underdiagnosed, and artificial intelligence tools for echocardiographic recognition have been hampered by lack of insight into drivers of model predictions and ease of implementation.

OBJECTIVES

The purpose of this study was to train and validate a machine learning model with visualization of model prediction, optimized for implementation, to identify HCM from echocardiography.

METHODS

1,601 HCM cases from 2000 to 2021 were matched on age, sex, year of echo, and ejection fraction to 7,103 controls from Duke Medical Center. Multivendor echocardiograms were used to train and validate a convolutional neural network (CNN) identifying HCM. Saliency maps were produced for insight into model predictions. CNN performance was evaluated by receiving operating characteristic and precision recall and additionally investigated among a subset of 232 patients with cardiac magnetic resonance imaging-based HCM morphologic grading.

RESULTS

Among the 1,601 HCM cases, the median age was 61, with 46.9% male. The median ejection fraction was 55% with 12.4% having an ejection fraction <50%. Median septal wall thickness was 1.6 (IQR) and 28.6% had obstructive HCM. Matched controls had similar demographics and ejection fraction. Model area under the curve when using the 4-chamber view was 0.84 with precision of 0.68. Among patients with cardiac magnetic resonance imaging-based HCM morphology, area under the curve was >0.95 for all morphologies with precision between 0.16 and 0.72. Saliency maps demonstrated maximum intensity within ventricular myocardium.

CONCLUSIONS

A machine learning CNN with model prediction visualization optimized for clinical implementation identifies all HCM morphologic subtypes. Further work is necessary to validate model performance in external data and real-world use.

摘要

背景

肥厚型心肌病(HCM)的诊断仍不足,用于超声心动图识别的人工智能工具因缺乏对模型预测驱动因素的深入了解和实施难度而受到阻碍。

目的

本研究的目的是训练并验证一个具有模型预测可视化功能、针对实施进行优化的机器学习模型,以从超声心动图中识别HCM。

方法

将2000年至2021年的1601例HCM病例按年龄、性别、超声年份和射血分数与杜克医学中心的7103例对照进行匹配。使用多厂家超声心动图训练并验证一个识别HCM的卷积神经网络(CNN)。生成显著性图以深入了解模型预测。通过接受操作特征曲线和精确召回率评估CNN的性能,并在基于心脏磁共振成像的HCM形态学分级的232例患者子集中进行额外研究。

结果

在1601例HCM病例中,中位年龄为61岁,男性占46.9%。中位射血分数为55%,12.4%的患者射血分数<50%。中位室间隔厚度为1.6(四分位间距),28.6%的患者患有梗阻性HCM。匹配的对照组具有相似的人口统计学特征和射血分数。使用四腔心视图时模型的曲线下面积为0.84,精确度为0.68。在基于心脏磁共振成像的HCM形态学患者中,所有形态的曲线下面积均>0.95,精确度在0.16至0.72之间。显著性图显示心室心肌内强度最大。

结论

一个针对临床实施进行优化的具有模型预测可视化功能的机器学习CNN可识别所有HCM形态学亚型。有必要进一步开展工作以验证该模型在外部数据和实际应用中的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfed/12235470/214314ee6376/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验