One Brave Idea and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (S.G., D.S., J.E.J., R.Y., M.H., C.A.M., R.C.D.).
Harvard Medical School, Boston, MA (S.G., J.E.J., R.Y., M.H., H.K.G., C.A.M., R.C.D.).
Circulation. 2022 Sep 6;146(10):755-769. doi: 10.1161/CIRCULATIONAHA.121.058696. Epub 2022 Aug 2.
Novel targeted treatments increase the need for prompt hypertrophic cardiomyopathy (HCM) detection. However, its low prevalence (0.5%) and resemblance to common diseases present challenges that may benefit from automated machine learning-based approaches. We aimed to develop machine learning models to detect HCM and to differentiate it from other cardiac conditions using ECGs and echocardiograms, with robust generalizability across multiple cohorts.
Single-institution HCM ECG models were trained and validated on external data. Multi-institution models for ECG and echocardiogram were trained on data from 3 academic medical centers in the United States and Japan using a federated learning approach, which enables training on distributed data without data sharing. Models were validated on held-out test sets for each institution and from a fourth academic medical center and were further evaluated for discrimination of HCM from aortic stenosis, hypertension, and cardiac amyloidosis. Last, automated detection was compared with manual interpretation by 3 cardiologists on a data set with a realistic HCM prevalence.
We identified 74 376 ECGs for 56 129 patients and 8392 echocardiograms for 6825 patients at the 4 academic medical centers. Although ECG models trained on data from each institution displayed excellent discrimination of HCM on internal test data (C statistics, 0.88-0.93), the generalizability was limited, most notably for a model trained in Japan and tested in the United States (C statistic, 0.79-0.82). When trained in a federated manner, discrimination of HCM was excellent across all institutions (C statistics, 0.90-0.96 and 0.90-0.96 for ECG and echocardiogram model, respectively), including for phenotypic subgroups. The models further discriminated HCM from hypertension, aortic stenosis, and cardiac amyloidosis (C statistics, 0.84, 0.83, and 0.88, respectively, for ECG and 0.93, 0.94, 0.85, respectively, for echocardiogram). Analysis of electrocardiography-echocardiography paired data from 11 823 patients from an external institution indicated a higher sensitivity of automated HCM detection at a given positive predictive value compared with cardiologists (0.98 versus 0.81 at a positive predictive value of 0.01 for ECG and 0.78 versus 0.59 at a positive predictive value of 0.24 for echocardiogram).
Federated learning improved the generalizability of models that use ECGs and echocardiograms to detect and differentiate HCM from other causes of hypertrophy compared with training within a single institution.
新型靶向治疗增加了对肥厚型心肌病(HCM)快速检测的需求。然而,其低患病率(0.5%)和与常见疾病的相似性带来了挑战,这些挑战可能受益于基于自动化机器学习的方法。我们旨在开发机器学习模型,使用心电图和超声心动图来检测 HCM,并将其与其他心脏疾病区分开来,同时在多个队列中具有强大的泛化能力。
在外部数据上训练和验证单机构 HCM 心电图模型。使用美国和日本 3 家学术医疗中心的数据,通过联邦学习方法训练多机构的心电图和超声心动图模型,这种方法可以在不共享数据的情况下在分布式数据上进行训练。在每个机构的保留测试集以及第四家学术医疗中心的测试集上验证模型,并进一步评估其区分 HCM 与主动脉瓣狭窄、高血压和心脏淀粉样变性的能力。最后,在一个具有真实 HCM 患病率的数据集中,将自动检测与 3 位心脏病专家的手动解释进行比较。
我们在 4 家学术医疗中心共确定了 74376 份心电图,涉及 56129 名患者,8392 份超声心动图,涉及 6825 名患者。尽管在内部测试数据上,每个机构训练的心电图模型都能很好地区分 HCM(C 统计量为 0.88-0.93),但其泛化能力有限,尤其是在日本机构训练、在美国机构测试的模型(C 统计量为 0.79-0.82)。当以联邦方式进行训练时,所有机构的 HCM 区分能力都非常出色(心电图和超声心动图模型的 C 统计量分别为 0.90-0.96 和 0.90-0.96),包括表型亚组。这些模型还能很好地区分 HCM 与高血压、主动脉瓣狭窄和心脏淀粉样变性(心电图的 C 统计量分别为 0.84、0.83 和 0.88,超声心动图的 C 统计量分别为 0.93、0.94、0.85)。对来自外部机构的 11823 名患者的心电图-超声心动图配对数据的分析表明,与心脏病专家相比,自动化 HCM 检测的灵敏度在给定阳性预测值时更高(心电图的阳性预测值为 0.01 时为 0.98,阳性预测值为 0.24 时为 0.78,超声心动图的阳性预测值为 0.01 时为 0.94,阳性预测值为 0.24 时为 0.59)。
与在单一机构内进行训练相比,联邦学习提高了使用心电图和超声心动图来检测和区分 HCM 与其他肥大原因的模型的泛化能力。