Suppr超能文献

在三维环境中自由移动的小鼠运动学的精确跟踪

Accurate Tracking of Locomotory Kinematics in Mice Moving Freely in Three-Dimensional Environments.

作者信息

Ignatowska-Jankowska Bogna M, Swaminathan Lakshmipriya I, Turkki Tara H, Sakharuk Dmitriy, Gurkan Ozer Aysen, Kuck Alexander, Uusisaari Marylka Yoe

机构信息

Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan.

出版信息

eNeuro. 2025 Jun 25;12(6). doi: 10.1523/ENEURO.0045-25.2025. Print 2025 Jun.

Abstract

Marker-based motion capture (MBMC) is a powerful tool for precise, high-speed, three-dimensional tracking of animal movements, enabling detailed study of behaviors ranging from subtle limb trajectories to broad spatial exploration. Despite its proven utility in larger animals, MBMC has remained underutilized in mice due to the difficulty of robust marker attachment during unrestricted behavior. In response to this challenge, markerless tracking methods, facilitated by machine learning, have become the standard in small animal studies due to their simpler experimental setup. However, trajectories obtained with markerless approaches at best approximate ground-truth kinematics, with accuracy strongly dependent on video resolution, training dataset quality, and computational resources for data processing. Here, we overcome the primary limitation of MBMC in mice by implanting minimally invasive markers that remain securely attached over weeks of recordings. This technique produces high-resolution, artifact-free trajectories, eliminating the need for extensive post-processing. We demonstrate the advantages of MBMC by resolving subtle drug-induced kinematic changes that become apparent only within specific behavioral contexts, necessitating precise three-dimensional tracking beyond simple flat-surface locomotion. Furthermore, MBMC uniquely captures the detailed spatiotemporal dynamics of harmaline-induced tremors, revealing previously inaccessible correlations between body parts and thus significantly improving the translational value of preclinical tremor models. While markerless tracking remains optimal for many behavioral neuroscience studies in which general posture estimation suffices, MBMC removes barriers to investigations demanding greater precision, reliability, and low-noise trajectories. This capability significantly broadens the scope for inquiry into the neuroscience of movement and related fields.

摘要

基于标记的运动捕捉(MBMC)是一种强大的工具,可用于精确、高速地三维跟踪动物运动,能够对从细微的肢体轨迹到广泛的空间探索等各种行为进行详细研究。尽管MBMC在大型动物中已被证明具有实用性,但由于在无限制行为期间难以牢固附着标记,它在小鼠研究中仍未得到充分利用。为应对这一挑战,由机器学习推动的无标记跟踪方法因其更简单的实验设置,已成为小动物研究的标准方法。然而,用无标记方法获得的轨迹充其量只是近似真实运动学,其准确性强烈依赖于视频分辨率、训练数据集质量以及数据处理的计算资源。在这里,我们通过植入微创标记克服了MBMC在小鼠研究中的主要限制,这些标记在数周的记录过程中能牢固附着。该技术产生高分辨率、无伪影的轨迹,无需大量的后期处理。我们通过解析仅在特定行为背景下才明显的细微药物诱导的运动学变化,证明了MBMC的优势,这需要超越简单平面运动的精确三维跟踪。此外,MBMC独特地捕捉了harmaline诱导震颤的详细时空动态,揭示了以前无法获得的身体部位之间的相关性,从而显著提高了临床前震颤模型的转化价值。虽然无标记跟踪对于许多只需一般姿势估计的行为神经科学研究仍然是最佳选择,但MBMC消除了对要求更高精度、可靠性和低噪声轨迹的研究的障碍。这种能力显著拓宽了对运动神经科学及相关领域的研究范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63da/12202027/f7543b3f7a90/eneuro-12-ENEURO.0045-25.2025-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验