Suppr超能文献

Keypoint-MoSeq:通过将点跟踪与姿势动态联系起来来解析行为。

Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics.

机构信息

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

出版信息

Nat Methods. 2024 Jul;21(7):1329-1339. doi: 10.1038/s41592-024-02318-2. Epub 2024 Jul 12.

Abstract

Keypoint tracking algorithms can flexibly quantify animal movement from videos obtained in a wide variety of settings. However, it remains unclear how to parse continuous keypoint data into discrete actions. This challenge is particularly acute because keypoint data are susceptible to high-frequency jitter that clustering algorithms can mistake for transitions between actions. Here we present keypoint-MoSeq, a machine learning-based platform for identifying behavioral modules ('syllables') from keypoint data without human supervision. Keypoint-MoSeq uses a generative model to distinguish keypoint noise from behavior, enabling it to identify syllables whose boundaries correspond to natural sub-second discontinuities in pose dynamics. Keypoint-MoSeq outperforms commonly used alternative clustering methods at identifying these transitions, at capturing correlations between neural activity and behavior and at classifying either solitary or social behaviors in accordance with human annotations. Keypoint-MoSeq also works in multiple species and generalizes beyond the syllable timescale, identifying fast sniff-aligned movements in mice and a spectrum of oscillatory behaviors in fruit flies. Keypoint-MoSeq, therefore, renders accessible the modular structure of behavior through standard video recordings.

摘要

关键点跟踪算法可以灵活地从各种环境中获取的视频中定量动物的运动。然而,如何将连续的关键点数据解析为离散的动作仍然不清楚。由于关键点数据容易受到高频抖动的影响,聚类算法可能会将其误认为是动作之间的转换,因此这一挑战尤其突出。在这里,我们提出了基于关键点的 MoSeq,这是一个基于机器学习的平台,用于在没有人工监督的情况下从关键点数据中识别行为模块(“音节”)。关键点的 MoSeq 使用生成模型来区分关键点噪声和行为,从而能够识别出其边界对应于姿势动力学中自然亚秒级不连续性的音节。关键点的 MoSeq 在识别这些转换方面优于常用的替代聚类方法,能够捕捉神经活动与行为之间的相关性,并根据人类注释对单一或社交行为进行分类。关键点的 MoSeq 也适用于多种物种,并超越了音节时间尺度进行泛化,能够识别老鼠的快速嗅探对齐运动和果蝇的一系列振荡行为。因此,关键点的 MoSeq 通过标准视频记录呈现了行为的模块化结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e446/11245396/cfe9f6900b45/41592_2024_2318_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验