Kim Jeong Hyun, Jo Young In, Jang Jun Ho, Yu Hyun Ji, Kim Jeong Eun, Kim Hyun Jae, Yeo Jia Bin, Lee Moo Young, Nam Ki Tae
Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.
Nat Commun. 2025 May 30;16(1):5038. doi: 10.1038/s41467-025-60354-8.
Electrochemical processes for CO mitigation can be broadly categorized into two approaches: CO capture via electrochemically generated bases and CO conversion through electrochemical reduction. Recent advancements have been concentrated to developing methods that efficiently capture and release CO or reduce base-CO adducts while regenerating bases for subsequent CO capture. In this study, we introduce an electrochemical strategy that integrates CO capture and conversion through a series of domino reactions initiated by the electrochemical generation of organic bases. This method involves the electrochemical deprotonation of halohydrin molecules, which generate hydrogen and halo-alkoxides that capture CO and spontaneously undergo intramolecular cyclization to yield cyclic carbonates. Direct and indirect Faradaic efficiency of up to 100% is achieved for both hydrogen and ethylene carbonate production, demonstrating highly selective sequential capture and conversion reactions. Our system provides a scalable pathway for synthesizing various cyclic carbonates directly from diluted CO sources.
通过电化学产生的碱捕获二氧化碳以及通过电化学还原转化二氧化碳。最近的进展主要集中在开发能够有效捕获和释放二氧化碳或还原碱 - 二氧化碳加合物,同时再生碱以便后续捕获二氧化碳的方法。在本研究中,我们介绍了一种电化学策略,该策略通过由有机碱的电化学产生引发的一系列多米诺反应来整合二氧化碳的捕获和转化。该方法涉及卤代醇分子的电化学去质子化,生成氢气和卤代醇盐,它们捕获二氧化碳并自发进行分子内环化生成环状碳酸酯。氢气和碳酸亚乙酯生产的直接和间接法拉第效率均高达100%,证明了高度选择性的顺序捕获和转化反应。我们的系统为直接从稀释的二氧化碳源合成各种环状碳酸酯提供了一条可扩展的途径。