Wang Qiong, Ji Dongdong, Wang Junhu, Liu Liang, Yang Xinquan, Zhang Yan, Liang Jingqi, Liu Peilong, Zhao Hongmou
Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, No. 76 Nanguo Road, Xi' an, 710054, People's Republic of China.
Sci Data. 2025 May 30;12(1):915. doi: 10.1038/s41597-025-05261-9.
Accurate measurement of hallux valgus angle (HVA) and intermetatarsal angle (IMA) is essential for diagnosing hallux valgus and determining appropriate treatment strategies. Traditional manual measurement methods, while standardized, are time-consuming, labor-intensive, and subject to evaluator bias. Recent advancements in deep learning have been applied to hallux valgus angle estimation, but the development of effective algorithms requires large, well-annotated datasets. Existing X-ray datasets are typically limited to cropped foot regions images, and only one dataset containing very few samples is publicly available. To address these challenges, we introduce HVAngleEst, the first large-scale, open-access dataset specifically designed for hallux valgus angle estimation. HVAngleEst comprises 1,382 X-ray images from 1,150 patients and includes comprehensive annotations, such as foot localization, hallux valgus angles, and line segments for each phalanx. This dataset enables fully automated, end-to-end hallux valgus angle estimation, reducing manual labor and eliminating evaluator bias.
准确测量拇外翻角(HVA)和跖间角(IMA)对于诊断拇外翻和确定合适的治疗策略至关重要。传统的手动测量方法虽然标准化,但耗时、 labor-intensive且易受评估者偏差影响。深度学习的最新进展已应用于拇外翻角估计,但有效算法的开发需要大型、标注良好的数据集。现有的X射线数据集通常仅限于裁剪后的足部区域图像,并且只有一个包含极少样本的数据集是公开可用的。为应对这些挑战,我们引入了HVAngleEst,这是第一个专门为拇外翻角估计设计的大规模、开放获取的数据集。HVAngleEst包含来自1150名患者的1382张X射线图像,并包括全面的注释,如足部定位、拇外翻角以及每个趾骨的线段。该数据集能够实现全自动、端到端的拇外翻角估计,减少人工劳动并消除评估者偏差。