深度学习驱动的自动线粒体分割,用于复杂透射电子显微镜图像分析。
Deep learning-driven automated mitochondrial segmentation for analysis of complex transmission electron microscopy images.
作者信息
Jang Chan, Lee Hojun, Yoo Jaejun, Yoon Haejin
机构信息
Graduate School of Artificial Intelligence, Ulsan National Institute of Science & Technology, Ulsan, 44919, Republic of Korea.
Department of Biological Sciences, Ulsan National Institute of Science & Technology, Ulsan, 44919, Republic of Korea.
出版信息
Sci Rep. 2025 May 30;15(1):19076. doi: 10.1038/s41598-025-03311-1.
Mitochondria are central to cellular energy production and regulation, with their morphology tightly linked to functional performance. Precise analysis of mitochondrial ultrastructure is crucial for understanding cellular bioenergetics and pathology. While transmission electron microscopy (TEM) remains the gold standard for such analyses, traditional manual segmentation methods are time-consuming and prone to error. In this study, we introduce a novel deep learning framework that combines probabilistic interactive segmentation with automated quantification of mitochondrial morphology. Leveraging uncertainty analysis and real-time user feedback, the model achieves comparable segmentation accuracy while reducing analysis time by 90% compared to manual methods. Evaluated on both benchmark Lucchi++ datasets and real-world TEM images of mouse skeletal muscle, the pipeline not only improved efficiency but also identified key pathological differences in mitochondrial morphology between wild-type and mdx mouse models of Duchenne muscular dystrophy. This automated approach offers a powerful, scalable tool for mitochondrial analysis, enabling high-throughput and reproducible insights into cellular function and disease mechanisms.
线粒体对于细胞能量产生和调节至关重要,其形态与功能表现紧密相连。线粒体超微结构的精确分析对于理解细胞生物能量学和病理学至关重要。虽然透射电子显微镜(TEM)仍然是此类分析的金标准,但传统的手动分割方法既耗时又容易出错。在本研究中,我们引入了一种新颖的深度学习框架,该框架将概率交互式分割与线粒体形态的自动量化相结合。利用不确定性分析和实时用户反馈,该模型实现了可比的分割精度,同时与手动方法相比,分析时间减少了90%。在基准Lucchi++数据集和小鼠骨骼肌的真实TEM图像上进行评估,该流程不仅提高了效率,还识别出了杜兴氏肌营养不良症的野生型和mdx小鼠模型之间线粒体形态的关键病理差异。这种自动化方法为线粒体分析提供了一个强大的、可扩展的工具,能够对细胞功能和疾病机制进行高通量和可重复的深入研究。