文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

疾病治疗中的纳米制剂:设计、进展、挑战及未来方向。

Nano-formulations in disease therapy: designs, advances, challenges, and future directions.

作者信息

Shi YunYan, Li Xiao, Li Zhiyuan, Sun Jialin, Gao Tong, Wei Gang, Guo Qie

机构信息

Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.

Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.

出版信息

J Nanobiotechnology. 2025 May 30;23(1):396. doi: 10.1186/s12951-025-03442-7.


DOI:10.1186/s12951-025-03442-7
PMID:40448105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12123787/
Abstract

Nano-formulations, as an innovative drug delivery system, offer distinct advantages in enhancing drug administration methods, improving bioavailability, promoting biodegradability, and enabling targeted delivery. By exploiting the unique size advantages of nano-formulations, therapeutic agents, including drugs, genes, and proteins, can be precisely reorganized at the microscale level. This modification not only facilitates the precise release of these agents but also significantly enhances their efficacy while minimizing adverse effects, thereby creating novel opportunities for treatment of a wide range of diseases. In this review, we discuss recent advancements, challenges, and future perspectives in nano-formulations for therapeutic applications. For this aim, we firstly introduce the development, design, synthesis, and action mechanisms of nano-formulations. Then, we summarize their applications in disease diagnosis and treatment, especially in fields of oncology, pulmonology, cardiology, endocrinology, dermatology, and ophthalmology. Furthermore, we address the challenges associated with the medical applications of nanomaterials, and provide an outlook on future directions based on these considerations. This review offers a comprehensive examination of the current applications and potential significance of nano-formulations in disease diagnosis and treatment, thereby contributing to the advancement of modern medical therapies.

摘要

纳米制剂作为一种创新的药物递送系统,在改进给药方式、提高生物利用度、促进生物降解性以及实现靶向递送方面具有显著优势。通过利用纳米制剂独特的尺寸优势,包括药物、基因和蛋白质在内的治疗剂能够在微观层面上进行精确重组。这种修饰不仅有助于这些药剂的精确释放,还能显著提高其疗效,同时将副作用降至最低,从而为治疗多种疾病创造了新的机会。在本综述中,我们讨论了纳米制剂在治疗应用方面的最新进展、挑战和未来展望。为此,我们首先介绍纳米制剂的发展、设计、合成及作用机制。然后,我们总结它们在疾病诊断和治疗中的应用,特别是在肿瘤学、肺病学、心脏病学、内分泌学、皮肤病学和眼科领域。此外,我们阐述了与纳米材料医学应用相关的挑战,并基于这些考虑对未来方向进行了展望。本综述全面审视了纳米制剂在疾病诊断和治疗中的当前应用及潜在意义,从而推动现代医学疗法的进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/387810239b92/12951_2025_3442_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/cb011f5d69ad/12951_2025_3442_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/d248bcdae529/12951_2025_3442_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/1fce2eada87e/12951_2025_3442_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/12ccf7119152/12951_2025_3442_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/d19fccd3e58e/12951_2025_3442_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/65184f039eb3/12951_2025_3442_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/eb38962651a1/12951_2025_3442_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/36e2d4505644/12951_2025_3442_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/aa456a34d2d0/12951_2025_3442_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/3cd32eff594e/12951_2025_3442_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/0e650c6b8f3f/12951_2025_3442_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/02b5628c89bc/12951_2025_3442_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/7b0ba63dbe18/12951_2025_3442_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/3f9d81523259/12951_2025_3442_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/7352bb8b3481/12951_2025_3442_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/a3418979fb06/12951_2025_3442_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/b05034464735/12951_2025_3442_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/6b75e6eee2c7/12951_2025_3442_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/196bfa8abe8a/12951_2025_3442_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/387810239b92/12951_2025_3442_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/cb011f5d69ad/12951_2025_3442_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/d248bcdae529/12951_2025_3442_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/1fce2eada87e/12951_2025_3442_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/12ccf7119152/12951_2025_3442_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/d19fccd3e58e/12951_2025_3442_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/65184f039eb3/12951_2025_3442_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/eb38962651a1/12951_2025_3442_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/36e2d4505644/12951_2025_3442_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/aa456a34d2d0/12951_2025_3442_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/3cd32eff594e/12951_2025_3442_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/0e650c6b8f3f/12951_2025_3442_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/02b5628c89bc/12951_2025_3442_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/7b0ba63dbe18/12951_2025_3442_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/3f9d81523259/12951_2025_3442_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/7352bb8b3481/12951_2025_3442_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/a3418979fb06/12951_2025_3442_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/b05034464735/12951_2025_3442_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/6b75e6eee2c7/12951_2025_3442_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/196bfa8abe8a/12951_2025_3442_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e490/12123787/387810239b92/12951_2025_3442_Fig20_HTML.jpg

相似文献

[1]
Nano-formulations in disease therapy: designs, advances, challenges, and future directions.

J Nanobiotechnology. 2025-5-30

[2]
Nano based drug delivery systems: recent developments and future prospects.

J Nanobiotechnology. 2018-9-19

[3]
Nano-based drug delivery system for therapeutics: a comprehensive review.

Biomed Phys Eng Express. 2023-8-17

[4]
Surface engineered multifunctional nano-systems for localised drug delivery against thyroid cancer: A review of current practices.

Biomed Pharmacother. 2024-7

[5]
Advancements in nanomedicine: Precision delivery strategies for male pelvic malignancies - Spotlight on prostate and colorectal cancer.

Exp Mol Pathol. 2024-6

[6]
Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges.

J Nanobiotechnology. 2024-7-22

[7]
Nano-Based Drug Delivery Systems for Managing Diabetes: Recent Advances and Future Prospects.

Int J Nanomedicine. 2025-5-16

[8]
[Targeted nanomedicine in diagnostics and therapy of neurological diseases].

Ideggyogy Sz. 2013-5-30

[9]
Advancements in Liposomal Nanomedicines: Innovative Formulations, Therapeutic Applications, and Future Directions in Precision Medicine.

Int J Nanomedicine. 2025-1-31

[10]
Opportunities and Challenges for Inhalable Nanomedicine Formulations in Respiratory Diseases: A Review.

Int J Nanomedicine. 2024

引用本文的文献

[1]
Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines.

Pharmaceutics. 2025-7-30

[2]
Nano-Phytomedicine: Harnessing Plant-Derived Phytochemicals in Nanocarriers for Targeted Human Health Applications.

Molecules. 2025-7-29

本文引用的文献

[1]
Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors.

Adv Drug Deliv Rev. 2025-4

[2]
Nanodrugs Targeting Key Factors of Ferroptosis Regulation for Enhanced Treatment of Osteoarthritis.

Adv Sci (Weinh). 2025-3

[3]
Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy.

Nat Biotechnol. 2024-12-10

[4]
Antitumour vaccination via the targeted proteolysis of antigens isolated from tumour lysates.

Nat Biomed Eng. 2025-2

[5]
Manganese Oxide-Incorporated Hybrid Lipid Nanoparticles Amplify the Potency of mRNA Vaccine via Oxygen Generation and STING Activation.

J Am Chem Soc. 2024-11-27

[6]
Cocrystal@protein-anchoring nanococktail for combinatorially treating multidrug-resistant cancer.

Acta Pharm Sin B. 2024-10

[7]
Targeted intervention in nerve-cancer crosstalk enhances pancreatic cancer chemotherapy.

Nat Nanotechnol. 2025-2

[8]
Sequential responsive nano-PROTACs for precise intracellular delivery and enhanced degradation efficacy in colorectal cancer therapy.

Signal Transduct Target Ther. 2024-10-18

[9]
Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes.

Nat Nanotechnol. 2024-12

[10]
Nanorepair medicine for treatment of organ injury.

Natl Sci Rev. 2024-8-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索