Suppr超能文献

用于肺部基因治疗的脂质纳米颗粒的人工智能引导设计

Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy.

作者信息

Witten Jacob, Raji Idris, Manan Rajith S, Beyer Emily, Bartlett Sandra, Tang Yinghua, Ebadi Mehrnoosh, Lei Junying, Nguyen Dien, Oladimeji Favour, Jiang Allen Yujie, MacDonald Elise, Hu Yizong, Mughal Haseeb, Self Ava, Collins Evan, Yan Ziying, Engelhardt John F, Langer Robert, Anderson Daniel G

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Biotechnol. 2024 Dec 10. doi: 10.1038/s41587-024-02490-y.

Abstract

Ionizable lipids are a key component of lipid nanoparticles, the leading nonviral messenger RNA delivery technology. Here, to advance the identification of ionizable lipids beyond current methods, which rely on experimental screening and/or rational design, we introduce lipid optimization using neural networks, a deep-learning strategy for ionizable lipid design. We created a dataset of >9,000 lipid nanoparticle activity measurements and used it to train a directed message-passing neural network for prediction of nucleic acid delivery with diverse lipid structures. Lipid optimization using neural networks predicted RNA delivery in vitro and in vivo and extrapolated to structures divergent from the training set. We evaluated 1.6 million lipids in silico and identified two structures, FO-32 and FO-35, with local mRNA delivery to the mouse muscle and nasal mucosa. FO-32 matched the state of the art for nebulized mRNA delivery to the mouse lung, and both FO-32 and FO-35 efficiently delivered mRNA to ferret lungs. Overall, this work shows the utility of deep learning for improving nanoparticle delivery.

摘要

可电离脂质是脂质纳米颗粒的关键组成部分,脂质纳米颗粒是领先的非病毒信使核糖核酸递送技术。在此,为了超越目前依赖实验筛选和/或合理设计的方法来推进可电离脂质的鉴定,我们引入了使用神经网络的脂质优化方法,这是一种用于可电离脂质设计的深度学习策略。我们创建了一个包含9000多个脂质纳米颗粒活性测量值的数据集,并使用它来训练一个定向消息传递神经网络,以预测具有不同脂质结构的核酸递送情况。使用神经网络进行的脂质优化在体外和体内预测了RNA递送情况,并外推到与训练集不同的结构。我们在计算机上评估了160万种脂质,并确定了两种结构,即FO-32和FO-35,它们能将局部信使核糖核酸递送至小鼠肌肉和鼻黏膜。FO-32在雾化信使核糖核酸递送至小鼠肺部方面与现有技术水平相当,并且FO-32和FO-35都能有效地将信使核糖核酸递送至雪貂肺部。总体而言,这项工作展示了深度学习在改善纳米颗粒递送方面的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验