文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于光学相干断层扫描图像上糖尿病性黄斑水肿分类的三维深度学习系统的开发与验证

Development and validation of a 3-D deep learning system for diabetic macular oedema classification on optical coherence tomography images.

作者信息

Zhu Huishan, Ji Jie, Lin Jian-Wei, Wang Ji, Zheng Yi, Xie Peiwen, Liu Cui, Ng Tsz Kin, Huang Jinqu, Xiong Yongqun, Wu Hanfu, Lin Leixian, Zhang Mingzhi, Zhang Guihua

机构信息

Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.

Shantou University Medical College, Shantou, China.

出版信息

BMJ Open. 2025 May 31;15(5):e099167. doi: 10.1136/bmjopen-2025-099167.


DOI:10.1136/bmjopen-2025-099167
PMID:40449950
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12128415/
Abstract

OBJECTIVES: To develop and validate an automated diabetic macular oedema (DME) classification system based on the images from different three-dimensional optical coherence tomography (3-D OCT) devices. DESIGN: A multicentre, platform-based development study using retrospective and cross-sectional data. Data were subjected to a two-level grading system by trained graders and a retina specialist, and categorised into three types: no DME, non-centre-involved DME and centre-involved DME (CI-DME). The 3-D convolutional neural networks algorithm was used for DME classification system development. The deep learning (DL) performance was compared with the diabetic retinopathy experts. SETTING: Data were collected from Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Chaozhou People's Hospital and The Second Affiliated Hospital of Shantou University Medical College from January 2010 to December 2023. PARTICIPANTS: 7790 volumes of 7146 eyes from 4254 patients were annotated, of which 6281 images were used as the development set and 1509 images were used as the external validation set, split based on the centres. MAIN OUTCOMES: Accuracy, F1-score, sensitivity, specificity, area under receiver operating characteristic curve (AUROC) and Cohen's kappa were calculated to evaluate the performance of the DL algorithm. RESULTS: In classifying DME with non-DME, our model achieved an AUROCs of 0.990 (95% CI 0.983 to 0.996) and 0.916 (95% CI 0.902 to 0.930) for hold-out testing dataset and external validation dataset, respectively. To distinguish CI-DME from non-centre-involved-DME, our model achieved AUROCs of 0.859 (95% CI 0.812 to 0.906) and 0.881 (95% CI 0.859 to 0.902), respectively. In addition, our system showed comparable performance (Cohen's κ: 0.85 and 0.75) to the retina experts (Cohen's κ: 0.58-0.92 and 0.70-0.71). CONCLUSIONS: Our DL system achieved high accuracy in multiclassification tasks on DME classification with 3-D OCT images, which can be applied to population-based DME screening.

摘要

目的:基于来自不同三维光学相干断层扫描(3-D OCT)设备的图像,开发并验证一种自动化糖尿病性黄斑水肿(DME)分类系统。 设计:一项基于平台的多中心开发研究,使用回顾性和横断面数据。数据由经过培训的分级人员和一名视网膜专家进行两级分级系统评估,并分为三种类型:无DME、非中心累及DME和中心累及DME(CI-DME)。使用三维卷积神经网络算法开发DME分类系统。将深度学习(DL)性能与糖尿病视网膜病变专家的性能进行比较。 设置:数据收集于2010年1月至2023年12月期间的汕头大学·香港中文大学联合汕头国际眼科中心、潮州市人民医院和汕头大学医学院第二附属医院。 参与者:对4254例患者的7146只眼睛的7790份图像进行了标注,其中6281幅图像用作开发集,1509幅图像用作外部验证集,根据中心进行划分。 主要结果:计算准确率、F1分数、灵敏度、特异性、受试者操作特征曲线下面积(AUROC)和科恩kappa系数,以评估DL算法的性能。 结果:在区分DME与非DME时,我们的模型在留出测试数据集和外部验证数据集上的AUROC分别为0.990(95%CI 0.983至0.996)和0.916(95%CI 0.902至0.930)。为了区分CI-DME与非中心累及DME,我们的模型的AUROC分别为0.859(95%CI 0.812至0.906)和0.881(95%CI 0.859至0.902)。此外,我们的系统与视网膜专家的表现相当(科恩kappa系数:0.85和0.75)(科恩kappa系数:0.58 - 0.92和0.70 - 0.71)。 结论:我们的DL系统在使用3-D OCT图像进行DME分类的多分类任务中实现了高精度,可应用于基于人群的DME筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ddc/12128415/7ed6c8268005/bmjopen-15-5-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ddc/12128415/9d23549779f5/bmjopen-15-5-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ddc/12128415/de2c5f17a577/bmjopen-15-5-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ddc/12128415/7ed6c8268005/bmjopen-15-5-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ddc/12128415/9d23549779f5/bmjopen-15-5-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ddc/12128415/de2c5f17a577/bmjopen-15-5-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ddc/12128415/7ed6c8268005/bmjopen-15-5-g003.jpg

相似文献

[1]
Development and validation of a 3-D deep learning system for diabetic macular oedema classification on optical coherence tomography images.

BMJ Open. 2025-5-31

[2]
A Multitask Deep-Learning System to Classify Diabetic Macular Edema for Different Optical Coherence Tomography Devices: A Multicenter Analysis.

Diabetes Care. 2021-9

[3]
Automated multidimensional deep learning platform for referable diabetic retinopathy detection: a multicentre, retrospective study.

BMJ Open. 2022-7-28

[4]
Hybrid deep learning models for the screening of Diabetic Macular Edema in optical coherence tomography volumes.

Sci Rep. 2024-7-31

[5]
Comparison of Central Macular Fluid Volume With Central Subfield Thickness in Patients With Diabetic Macular Edema Using Optical Coherence Tomography Angiography.

JAMA Ophthalmol. 2021-7-1

[6]
DETECTION OF MORPHOLOGIC PATTERNS OF DIABETIC MACULAR EDEMA USING A DEEP LEARNING APPROACH BASED ON OPTICAL COHERENCE TOMOGRAPHY IMAGES.

Retina. 2021-5-1

[7]
Classification of diabetic maculopathy based on optical coherence tomography images using a Vision Transformer model.

BMJ Open Ophthalmol. 2023-12-21

[8]
Fully automated detection of retinal disorders by image-based deep learning.

Graefes Arch Clin Exp Ophthalmol. 2019-3

[9]
Deep Learning to Detect OCT-derived Diabetic Macular Edema from Color Retinal Photographs: A Multicenter Validation Study.

Ophthalmol Retina. 2022-5

[10]
Diagnostic Utility of Swept-Source OCT-Based Biometry and Fundus Photographs Compared to Spectral Domain OCT in Center-Involving Diabetic Macular Edema.

Ophthalmic Epidemiol. 2025-2

本文引用的文献

[1]
Automated and code-free development of a risk calculator using ChatGPT-4 for predicting diabetic retinopathy and macular edema without retinal imaging.

Int J Retina Vitreous. 2025-1-31

[2]
Diabetic Macular Edema Optical Coherence Tomography Biomarkers Detected with EfficientNetV2B1 and ConvNeXt.

Diagnostics (Basel). 2023-12-28

[3]
Noise reduction by adaptive-SIN filtering for retinal OCT images.

Sci Rep. 2021-9-30

[4]
A Multitask Deep-Learning System to Classify Diabetic Macular Edema for Different Optical Coherence Tomography Devices: A Multicenter Analysis.

Diabetes Care. 2021-9

[5]
DETECTION OF MORPHOLOGIC PATTERNS OF DIABETIC MACULAR EDEMA USING A DEEP LEARNING APPROACH BASED ON OPTICAL COHERENCE TOMOGRAPHY IMAGES.

Retina. 2021-5-1

[6]
Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis.

Med Image Comput Comput Assist Interv. 2019-10

[7]
Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets.

Nat Commun. 2019-11-28

[8]
The art of using t-SNE for single-cell transcriptomics.

Nat Commun. 2019-11-28

[9]
Fusing Results of Several Deep Learning Architectures for Automatic Classification of Normal and Diabetic Macular Edema in Optical Coherence Tomography.

Annu Int Conf IEEE Eng Med Biol Soc. 2018-7

[10]
Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings.

Ophthalmology. 2018-5-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索