Suppr超能文献

使用ChatGPT-4在无视网膜成像的情况下自动且无需编码开发用于预测糖尿病性视网膜病变和黄斑水肿的风险计算器。

Automated and code-free development of a risk calculator using ChatGPT-4 for predicting diabetic retinopathy and macular edema without retinal imaging.

作者信息

Choi Eun Young, Choi Joon Yul, Yoo Tae Keun

机构信息

Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.

Department of Biomedical Engineering, Yonsei University, Wonju, South Korea.

出版信息

Int J Retina Vitreous. 2025 Jan 31;11(1):11. doi: 10.1186/s40942-025-00638-9.

Abstract

BACKGROUND

Diabetic retinopathy (DR) and macular edema (DME) are critical causes of vision loss in patients with diabetes. In many communities, access to ophthalmologists and retinal imaging equipment is limited, making screening for diabetic retinal complications difficult in primary health care centers. We investigated whether ChatGPT-4, an advanced large-language-model chatbot, can develop risk calculators for DR and DME using health check-up tabular data without the need for retinal imaging or coding experience.

METHODS

Data-driven prediction models were developed using medical history and laboratory blood test data from diabetic patients in the Korea National Health and Nutrition Examination Surveys (KNHANES). The dataset was divided into training (KNHANES 2017-2020) and validation (KNHANES 2021) datasets. ChatGPT-4 was used to build prediction formulas for DR and DME and developed a web-based risk calculator tool. Logistic regression analysis was performed by ChatGPT-4 to predict DR and DME, followed by the automatic generation of Hypertext Markup Language (HTML) code for the web-based tool. The performance of the models was evaluated using areas under the curves of receiver operating characteristic curve (ROC-AUCs).

RESULTS

ChatGPT-4 successfully developed a risk calculator for DR and DME, operational on a web browser without any coding experience. The validation set showed ROC-AUCs of 0.786 and 0.835 for predicting DR and DME, respectively. The performance of the ChatGPT-4 developed models was comparable to those created using various machine-learning tools.

CONCLUSION

By utilizing ChatGPT-4 with code-free prompts, we overcame the technical barriers associated with using coding skills for developing prediction models, making it feasible to build a risk calculator for DR and DME prediction. Our approach offers an easily accessible tool for the risk prediction of DM and DME in diabetic patients during health check-ups, without the need for retinal imaging. Based on this automatically developed risk calculator using ChatGPT-4, health care workers will be able to effectively screen patients who require retinal examinations using only medical history and laboratory data. Future research should focus on validating this approach in diverse populations and exploring the integration of more comprehensive clinical data to enhance predictive performance.

摘要

背景

糖尿病视网膜病变(DR)和黄斑水肿(DME)是糖尿病患者视力丧失的关键原因。在许多社区,眼科医生和视网膜成像设备的可及性有限,这使得在初级医疗保健中心筛查糖尿病视网膜并发症变得困难。我们调查了先进的大型语言模型聊天机器人ChatGPT-4是否能够使用健康检查表格数据开发DR和DME的风险计算器,而无需视网膜成像或编码经验。

方法

利用韩国国家健康与营养检查调查(KNHANES)中糖尿病患者的病史和实验室血液检测数据开发数据驱动的预测模型。数据集分为训练(KNHANES 2017 - 2020)和验证(KNHANES 2021)数据集。ChatGPT-4用于构建DR和DME的预测公式,并开发了一个基于网络的风险计算器工具。ChatGPT-4进行逻辑回归分析以预测DR和DME,随后自动生成基于网络工具的超文本标记语言(HTML)代码。使用受试者工作特征曲线下面积(ROC-AUC)评估模型的性能。

结果

ChatGPT-4成功开发了DR和DME的风险计算器,无需任何编码经验即可在网络浏览器上运行。验证集预测DR和DME的ROC-AUC分别为0.786和0.835。ChatGPT-4开发的模型性能与使用各种机器学习工具创建的模型相当。

结论

通过使用无代码提示的ChatGPT-4,我们克服了开发预测模型时与使用编码技能相关的技术障碍,使得构建DR和DME预测的风险计算器成为可能。我们的方法为糖尿病患者在健康检查期间进行DR和DME风险预测提供了一个易于使用的工具,无需视网膜成像。基于使用ChatGPT-4自动开发的风险计算器,医护人员将能够仅使用病史和实验室数据有效地筛查需要进行视网膜检查的患者。未来的研究应集中在不同人群中验证这种方法,并探索整合更全面的临床数据以提高预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071b/11786427/a8aa89c8233b/40942_2025_638_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验