Suppr超能文献

融合多种深度学习架构的结果用于光学相干断层扫描中正常和糖尿病性黄斑水肿的自动分类

Fusing Results of Several Deep Learning Architectures for Automatic Classification of Normal and Diabetic Macular Edema in Optical Coherence Tomography.

作者信息

Chan Genevieve C Y, Kamble Ravi, Muller Henning, Shah Syed A A, Tang T B, Meriaudeau Fabrice

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:670-673. doi: 10.1109/EMBC.2018.8512371.

Abstract

Diabetic Macular Edema (DME) is a severe eye disease that can lead to irreversible blindness if it is left untreated. DME diagnosis still relies on manual evaluation from opthalmologists, thus the process is time consuming and diagnosis may be subjective. This paper presents two novel DME detection frameworks: (1) combining features from three pre-trained Convolutional Neural Networks: AlexNet, VggNet and GoogleNet and performing feature space reduction using Principal Component Analysis and (2) a majority voting scheme based on a plurality rule between classifications from AlexNet, VggNet and GoogleNet. Experiments were conducted using Optical Coherence Tomography datasets retrieved from the Singapore Eye Research Institute and the Chinese University Hong Kong. The results are evaluated using a Leave-Two-Patients-Out Cross Validation at the volume level. This method improves DME classification with an accuracy of 93.75%, which is similar to the best algorithms so far on the same data sets.

摘要

糖尿病性黄斑水肿(DME)是一种严重的眼部疾病,如果不进行治疗,可能会导致不可逆转的失明。DME的诊断仍然依赖于眼科医生的人工评估,因此这个过程很耗时,而且诊断可能具有主观性。本文提出了两种新颖的DME检测框架:(1)结合来自三个预训练卷积神经网络(AlexNet、VggNet和GoogleNet)的特征,并使用主成分分析进行特征空间约简;(2)基于AlexNet、VggNet和GoogleNet分类之间的多数规则的多数投票方案。使用从新加坡眼科研究所和香港中文大学获取的光学相干断层扫描数据集进行了实验。结果在体积水平上使用留两患者交叉验证进行评估。该方法将DME分类的准确率提高到了93.75%,这与目前在相同数据集上的最佳算法相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验