Bazouband Elaheh, Zakery Abdolnasser, Hashemi Mahdieh
Department of Physics, College of Science, Shiraz University, Shiraz, 71946-24795, Iran.
Department of Physics, College of Science, Fasa University, Fasa, 74617-81189, Iran.
Sci Rep. 2025 Jun 1;15(1):19216. doi: 10.1038/s41598-025-04663-4.
Metasurfaces, with their remarkable ability to control electromagnetic beams, provide great prospects for optical systems. Recently, active metasurfaces have gained more attention compared to passive ones due to their tunable functionality. However, most active metasurfaces just focus on tunability, this work presents [Formula: see text]-based metasurfaces that consider both stable and tunable functions. The proposed design investigates the performance of metasurfaces at two distinct temperatures, [Formula: see text] = [Formula: see text] C and [Formula: see text] = [Formula: see text] C, for two input wavelengths [Formula: see text] = 900 nm and [Formula: see text] = 1500 nm. The metasurfaces include metalenses and gradient metasurfaces, each with a specific structure for different wavelengths, and are constructed with polarization-insensitive metaatoms. Numerical simulations reveal that at [Formula: see text] = [Formula: see text] C, the metasurfaces exhibit considerable focusing efficiencies and precise refracted beam directions for two input wavelengths. When the temperature changes to [Formula: see text] = [Formula: see text] C, the operations of metasurfaces remain stable for [Formula: see text] = 900 nm due to the stable state of [Formula: see text] at this wavelength range. In contrast, at [Formula: see text] = 1500 nm, they undergo a sharp change because of an insulator-to-metal (IM) phase transition of [Formula: see text] at this wavelength. Specifically, focusing efficiency drops to zero, and no refracted beam with a specified direction is observed at [Formula: see text] = 1500 nm. Therefore, this work with the stable performance at [Formula: see text] = 900 nm and the switchable performance at [Formula: see text] = 1500 nm, would be applicable for thermally adaptive optical systems sensitive to temperature variation.
超表面具有控制电磁光束的卓越能力,为光学系统提供了广阔前景。近年来,有源超表面因其可调谐功能相比无源超表面受到了更多关注。然而,大多数有源超表面仅专注于可调谐性,本文提出了基于[公式:见正文]的超表面,其兼具稳定和可调功能。所提出的设计研究了超表面在两个不同温度([公式:见正文]=[公式:见正文]°C和[公式:见正文]=[公式:见正文]°C)下,对于两个输入波长([公式:见正文]=900纳米和[公式:见正文]=1500纳米)的性能。这些超表面包括金属透镜和梯度超表面,每个都针对不同波长具有特定结构,并由对偏振不敏感的超原子构成。数值模拟表明,在[公式:见正文]=[公式:见正文]°C时,超表面对于两个输入波长展现出可观的聚焦效率和精确的折射光束方向。当温度变为[公式:见正文]=[公式:见正文]°C时,由于在该波长范围内[公式:见正文]的稳定状态,对于[公式:见正文]=900纳米,超表面的操作保持稳定。相比之下,在[公式:见正文]=1500纳米时,由于在该波长处[公式:见正文]发生绝缘体到金属(IM)相变,它们会发生急剧变化。具体而言,聚焦效率降至零,并且在[公式:见正文]=1500纳米处未观察到具有特定方向的折射光束。因此,这项在[公式:见正文]=900纳米具有稳定性能且在[公式:见正文]=1500纳米具有可切换性能的工作,将适用于对温度变化敏感的热自适应光学系统。