Spillias S, Ollerhead K M, Andreotta M, Annand-Jones R, Boschetti F, Duggan J, Karcher D B, Paris C, Shellock R J, Trebilco R
CSIRO Environment, Hobart, TAS, Australia.
Centre for Marine Socioecology, University of Tasmania, Hobart, TAS, Australia.
Environ Evid. 2025 Jun 2;14(1):9. doi: 10.1186/s13750-025-00362-9.
Uptake of AI tools in knowledge production processes is rapidly growing. In this pilot study, we explore the ability of generative AI tools to reliably extract qualitative data from a limited sample of peer-reviewed documents in the context of community-based fisheries management (CBFM) literature. Specifically, we evaluate the capacity of multiple AI tools to analyse 33 CBFM papers and extract relevant information for a systematic literature review, comparing the results to those of human reviewers. We address how well AI tools can discern the presence of relevant contextual data, whether the outputs of AI tools are comparable to human extractions, and whether the difficulty of question influences the performance of the extraction. While the AI tools we tested (GPT4-Turbo and Elicit) were not reliable in discerning the presence or absence of contextual data, at least one of the AI tools consistently returned responses that were on par with human reviewers. These results highlight the potential utility of AI tools in the extraction phase of evidence synthesis for supporting human-led reviews, while underscoring the ongoing need for human oversight. This exploratory investigation provides initial insights into the current capabilities and limitations of AI in qualitative data extraction within the specific domain of CBFM, laying groundwork for future, more comprehensive evaluations across diverse fields and larger datasets.
人工智能工具在知识生产过程中的应用正在迅速增长。在这项试点研究中,我们探讨了生成式人工智能工具在基于社区的渔业管理(CBFM)文献背景下,从有限的同行评审文档样本中可靠提取定性数据的能力。具体而言,我们评估了多种人工智能工具分析33篇CBFM论文并提取相关信息以进行系统文献综述的能力,并将结果与人类评审员的结果进行比较。我们研究了人工智能工具在识别相关背景数据方面的表现如何,人工智能工具的输出是否与人类提取的结果可比,以及问题的难度是否会影响提取的性能。虽然我们测试的人工智能工具(GPT4-Turbo和Elicit)在识别背景数据的存在与否方面不可靠,但至少有一种人工智能工具始终给出与人类评审员相当的回复。这些结果凸显了人工智能工具在证据综合提取阶段对支持人类主导的综述的潜在效用,同时强调了持续需要人类监督。这项探索性调查为CBFM特定领域中人工智能在定性数据提取方面的当前能力和局限性提供了初步见解,为未来在不同领域和更大数据集上进行更全面的评估奠定了基础。