Liu Yidong, Chandresh Abhinav, Heinke Lars
Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Physical Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
ACS Phys Chem Au. 2025 Mar 4;5(3):266-273. doi: 10.1021/acsphyschemau.4c00104. eCollection 2025 May 28.
For enhancing the performance of electric double-layer capacitors, the porous electrodes must be further optimized. While many studies on electrolyte and electrode structures enable detailed insights, the length of the pore channels of the electrode has been overlooked. Here, we use films of two-dimensional conductive metal-organic frameworks, where the film thickness (and thus the pore channel length) is rationally tuned over a wide range. Cyclic voltammetry experiments with two different electrolytes were conducted, revealing the charge transport kinetics in the porous electrodes. For the highly mobile electrolyte, the kinetics is not limited by ion transport (i.e., diffusion) even for thick films, exhibiting mainly surface-controlled kinetic behavior. In contrast, for the less mobile electrolyte, the kinetics is primarily limited by ion diffusion, and the pore channel length has a severe impact, where long channels result in strongly decreased capacitances, highlighting the importance of adjusting the channel length.
为了提高双电层电容器的性能,多孔电极必须进一步优化。虽然许多关于电解质和电极结构的研究能提供详细的见解,但电极孔道的长度却一直被忽视。在此,我们使用二维导电金属有机框架薄膜,其中薄膜厚度(进而孔道长度)可在很宽的范围内合理调节。我们进行了使用两种不同电解质的循环伏安法实验,揭示了多孔电极中的电荷传输动力学。对于高迁移率的电解质,即使对于厚膜,动力学也不受离子传输(即扩散)限制,主要表现为表面控制的动力学行为。相反,对于低迁移率的电解质,动力学主要受离子扩散限制,且孔道长度有严重影响,长孔道会导致电容大幅降低,这突出了调节孔道长度的重要性。