文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

宫颈癌的敏感基因:基于实验验证的两样本孟德尔随机化研究

The Sensitive Genes for Cervical Cancer: Two-Sample Mendelian Randomization with Experimental Validation.

作者信息

Zhang Rong, Chai Shengjun, Chen Qihang, Lai Jiaming, Cai Chunmei

机构信息

Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, Qinghai, People's Republic of China.

Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University Medical College, Xining, Qinghai, People's Republic of China.

出版信息

Int J Womens Health. 2025 May 26;17:1511-1532. doi: 10.2147/IJWH.S516444. eCollection 2025.


DOI:10.2147/IJWH.S516444
PMID:40453042
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12124307/
Abstract

BACKGROUND: Cervical cancer, the fourth leading cause of female cancer mortality globally, faces treatment limitations due to drug resistance and few therapeutic options. This study seeks to identify novel therapeutic targets to address this urgent clinical need. METHODS: Our team identified differentially expressed genes (DEGs) in cervical cancer using gene expression omnibus (GEO) datasets. Subsequently, Mendelian randomization (MR) analysis identified causal gene-cancer relationships, followed by enrichment analysis and The Cancer Genome Atlas (TCGA) validation. Finally, we further validated the functions of the selected target genes in cervical cancer cells and analyzed their Gene Set Enrichment Analysis (GSEA) results, drug sensitivity, and prognostic value. RESULTS: We identified 2,801 upregulated and 1,646 downregulated DEGs. MR analysis identified 21 key cervical cancer-associated genes (14 upregulated, 7 downregulated), with TCGA validation confirming significant differential expression patterns. Among them, few studies have examined these core genes, particularly MERTK and SERPINF1, in cervical cancer. Experiments showed that MERTK and SERPINF1 play a role in cervical cancer. These genes help cancer cells grow, spread, and invade surrounding tissue. Mechanistically, MERTK regulates immune infiltration, whereas SERPINF1 modulates chromosomal activity. Clinically, SERPINF1 enhances overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in individuals with cervical cancer. Moreover, we discovered that several commonly used drugs for cervical cancer treatment, like paclitaxel, showed high efficacy against MERTK and SERPINF1. CONCLUSION: Our study uncovers MERTK and SERPINF1 as critical regulators of cervical cancer progression and survival, offering mechanistic insights into their roles in tumor behavior and the immune microenvironment. These findings provide a foundation for precision therapies, with SERPINF1 restoration and MERTK inhibition as promising strategies. Clinical translation of these targets could address current treatment limitations.

摘要

背景:宫颈癌是全球女性癌症死亡的第四大主要原因,由于耐药性和治疗选择有限,面临治疗局限性。本研究旨在确定新的治疗靶点,以满足这一紧迫的临床需求。 方法:我们的团队使用基因表达综合数据库(GEO)数据集确定了宫颈癌中差异表达基因(DEG)。随后,孟德尔随机化(MR)分析确定了因果基因与癌症的关系,接着进行了富集分析和癌症基因组图谱(TCGA)验证。最后,我们进一步验证了所选靶基因在宫颈癌细胞中的功能,并分析了它们的基因集富集分析(GSEA)结果、药物敏感性和预后价值。 结果:我们确定了2801个上调的和1646个下调的DEG。MR分析确定了21个与宫颈癌相关的关键基因(14个上调,7个下调),TCGA验证证实了显著的差异表达模式。其中,很少有研究在宫颈癌中研究这些核心基因,特别是MERTK和SERPINF1。实验表明,MERTK和SERPINF1在宫颈癌中起作用。这些基因帮助癌细胞生长、扩散并侵入周围组织。从机制上讲,MERTK调节免疫浸润,而SERPINF1调节染色体活性。在临床上,SERPINF1可提高宫颈癌患者的总生存期(OS)、疾病特异性生存期(DSS)和无进展生存期(PFI)。此外,我们发现几种常用的宫颈癌治疗药物,如紫杉醇,对MERTK和SERPINF1显示出高疗效。 结论:我们的研究揭示了MERTK和SERPINF1是宫颈癌进展和生存的关键调节因子,为它们在肿瘤行为和免疫微环境中的作用提供了机制性见解。这些发现为精准治疗提供了基础,恢复SERPINF1和抑制MERTK是有前景的策略。这些靶点的临床转化可以解决当前的治疗局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/217df69503e4/IJWH-17-1511-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/8915ee59fc9e/IJWH-17-1511-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/ac7978e6872d/IJWH-17-1511-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/8132d5324aec/IJWH-17-1511-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/1809f05fed1f/IJWH-17-1511-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/689d70b6e15b/IJWH-17-1511-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/63251b7fd9e5/IJWH-17-1511-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/5426e053ae4d/IJWH-17-1511-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/e8dcab18a6e7/IJWH-17-1511-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/217df69503e4/IJWH-17-1511-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/8915ee59fc9e/IJWH-17-1511-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/ac7978e6872d/IJWH-17-1511-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/8132d5324aec/IJWH-17-1511-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/1809f05fed1f/IJWH-17-1511-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/689d70b6e15b/IJWH-17-1511-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/63251b7fd9e5/IJWH-17-1511-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/5426e053ae4d/IJWH-17-1511-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/e8dcab18a6e7/IJWH-17-1511-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598f/12124307/217df69503e4/IJWH-17-1511-g0009.jpg

相似文献

[1]
The Sensitive Genes for Cervical Cancer: Two-Sample Mendelian Randomization with Experimental Validation.

Int J Womens Health. 2025-5-26

[2]
Amino acid metabolism-related genes as potential biomarkers and the role of MATN3 in stomach adenocarcinoma: A bioinformatics, mendelian randomization and experimental validation study.

Int Immunopharmacol. 2024-12-25

[3]
Exploration of key pathogenic mechanisms and potential intervention targets of the traditional Chinese medicine Coptis chinensis in the treatment of cervical cancer based on network pharmacology and molecular docking techniques.

Transl Cancer Res. 2025-1-31

[4]
Integrative eQTL and Mendelian randomization analysis reveals key genetic markers in mesothelioma.

Respir Res. 2025-4-13

[5]
Exploring Novel Therapeutic Targets in Breast Cancer via Comprehensive Omics Profiling and Experimental Verification.

Biology (Basel). 2025-4-11

[6]
Deciphering the role of pyroptosis-related genes and natural killer T cells in sepsis pathogenesis: a comprehensive bioinformatics and Mendelian randomization analysis.

J Physiol Pharmacol. 2025-4

[7]
Exploring potential therapeutic targets for small cell lung cancer based on transcriptomics combined with Mendelian randomization analysis.

Front Immunol. 2025-1-13

[8]
Machine Learning and Mendelian Randomization Reveal Molecular Mechanisms and Causal Relationships of Immune-Related Biomarkers in Periodontitis.

Mediators Inflamm. 2024-12-16

[9]
Development and validation of a 14-CpG DNA methylation signature and drug targets for prognostic prediction in breast cancer.

Front Med (Lausanne). 2025-3-19

[10]
Integrated approach of machine learning, Mendelian randomization and experimental validation for biomarker discovery in diabetic nephropathy.

Diabetes Obes Metab. 2024-12

引用本文的文献

[1]
Association and interaction network analysis of immune cell subgroups in cervical cancer microenvironment based on Mendelian randomization.

Discov Oncol. 2025-7-26

本文引用的文献

[1]
Cardiac Macrophages Promote Polarization of Macrophages toward M2 Phenotype to Improve Myocardial Remodeling via NGAL after Myocardial Infarction.

Cell Biochem Biophys. 2025-3-26

[2]
An innovative glutamine metabolism-related gene signature for predicting prognosis and immune landscape in cervical cancer.

Discov Oncol. 2025-3-20

[3]
Dysregulated circular RNA and long non-coding RNA-Mediated regulatory competing endogenous RNA networks (ceRNETs) in ovarian and cervical cancers: A non-coding RNA-Mediated mechanism of chemotherapeutic resistance with new emerging clinical capacities.

Arch Biochem Biophys. 2025-6

[4]
Proteogenomic characterization of molecular and cellular targets for treatment-resistant subtypes in locally advanced cervical cancers.

Mol Cancer. 2025-3-14

[5]
Development and Characterization of Three Novel FGFR Inhibitor Resistant Cervical Cancer Cell Lines to Help Drive Cervical Cancer Research.

Int J Mol Sci. 2025-2-20

[6]
Global, regional, and national burden of breast, cervical, uterine, and ovarian cancer and their risk factors among women from 1990 to 2021, and projections to 2050: findings from the global burden of disease study 2021.

BMC Cancer. 2025-2-24

[7]
Investigating the role of exosomal long non-coding RNAs in drug resistance within female reproductive system cancers.

Front Cell Dev Biol. 2025-1-24

[8]
Genome-Wide Association Analyses of HPV16 and HPV18 Seropositivity Identify Susceptibility Loci for Cervical Cancer.

J Med Virol. 2025-2

[9]
Revolutionizing prognosis: Introducing cell death index (CDI) as a powerful prognostic tool for CSCC patients.

Environ Toxicol. 2025-3

[10]
The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide.

Int J Cancer. 2025-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索