Cai Yan, Jiang Nanxing, Wang Yan, Ji Min, Shen Wenzhe, Wang Qiming
Department of Obstetrics and Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315012, China.
Discov Oncol. 2025 Jul 26;16(1):1412. doi: 10.1007/s12672-025-03238-z.
The interactions among cell subgroups in the cervical cancer immune microenvironment play crucial roles in tumor development, but their causal relationships remain unclear.
This study employed Mendelian randomization to analyze causal associations between immune cell subgroups and cervical cancer. Multiple statistical methods, including inverse variance weighted, weighted median, and simple mode approaches, were used to evaluate effect sizes. Hierarchical clustering, UMAP, and t-SNE were applied for cell subgroup classification, combined with MIF signaling pathway analysis for cell-cell interaction networks.
Most immune cell subgroups showed effect estimates close to 1.000 (95%CI: 0.997-1.002) with statistical significance (p < 0.05). Hierarchical clustering analysis revealed eight major cell populations: regulatory T cells, T cells, epithelial cells, natural killer cells, monocytes, ciliated epithelial cells, B cells, and fibroblasts. Cell-cell interaction network analysis demonstrated extensive connectivity among immune cells and between immune and epithelial cells, with particularly strong interactions between monocytes and other immune cells. MIF signaling pathway analysis further confirmed the close relationship between regulatory T cells and T cells.
This study systematically revealed the causal associations among cell subgroups in the cervical cancer immune microenvironment using Mendelian randomization, providing new insights into understanding tumor immune microenvironment regulation mechanisms and potentially offering theoretical basis for optimizing cervical cancer immunotherapy strategies.
宫颈癌免疫微环境中细胞亚群之间的相互作用在肿瘤发展中起关键作用,但其因果关系仍不清楚。
本研究采用孟德尔随机化分析免疫细胞亚群与宫颈癌之间的因果关联。使用了多种统计方法,包括逆方差加权、加权中位数和简单模式方法来评估效应大小。应用层次聚类、UMAP和t-SNE进行细胞亚群分类,并结合MIF信号通路分析细胞间相互作用网络。
大多数免疫细胞亚群的效应估计值接近1.000(95%CI:0.997-1.002),具有统计学意义(p<0.05)。层次聚类分析揭示了八个主要细胞群体:调节性T细胞、T细胞、上皮细胞、自然杀伤细胞、单核细胞、纤毛上皮细胞、B细胞和成纤维细胞。细胞间相互作用网络分析表明免疫细胞之间以及免疫细胞与上皮细胞之间存在广泛的连接,单核细胞与其他免疫细胞之间的相互作用尤为强烈。MIF信号通路分析进一步证实了调节性T细胞与T细胞之间的密切关系。
本研究利用孟德尔随机化系统地揭示了宫颈癌免疫微环境中细胞亚群之间的因果关联,为理解肿瘤免疫微环境调节机制提供了新的见解,并可能为优化宫颈癌免疫治疗策略提供理论依据。