Ahmed Elkhidir Babikir Marwa Mohamed, Abdalla Ibrahim Fatima Ibrahim, Osman Elhassan Haram Hafiz, Elhaj Fatin A, Hamid Zain Elabdin Sara Omer, Sidahmed Mohammed Shahd Abdullahi, Mohamed Osman Manar Eltayeb, Ahmed Dalia
Internal Medicine, Najran Armed Forces Hospital, Ministry of Defense Health Services, Najran, SAU.
Internal Medicine, Dr. Erfan and Bagedo General Hospital, Jeddah, SAU.
Cureus. 2025 Apr 30;17(4):e83267. doi: 10.7759/cureus.83267. eCollection 2025 Apr.
Intracranial hypertension (ICH) is a critical complication of traumatic brain injury (TBI), associated with poor outcomes. AI shows promise for early ICH prediction, but its clinical integration remains uncertain. This systematic review evaluates the performance, clinical applicability, and limitations of AI models for ICH prediction in TBI. We searched PubMed, Embase, IEEE Xplore, and Scopus, identifying 250 records. After removing duplicates and screening titles and abstracts, 37 full-text articles were assessed, with 9 studies meeting the inclusion criteria. Risk of bias was evaluated using PROBAST, and data on algorithms, performance metrics, and clinical integration were extracted. The included studies demonstrated strong predictive performance, with ensemble models achieving the highest accuracy. However, reliance on invasive monitoring, small sample sizes, and retrospective designs limited generalizability. Only one non-AI study reported clinical integration, highlighting a translational gap. While AI models show potential for ICH prediction, methodological heterogeneity and the lack of prospective validation hinder clinical adoption. Future research should prioritize standardized outcomes, model explainability, and real-world testing to bridge this gap.
颅内高压(ICH)是创伤性脑损伤(TBI)的一种关键并发症,与不良预后相关。人工智能在早期颅内高压预测方面显示出前景,但其临床应用仍不确定。本系统评价评估了用于预测TBI中ICH的人工智能模型的性能、临床适用性和局限性。我们检索了PubMed、Embase、IEEE Xplore和Scopus,共识别出250条记录。在去除重复记录并筛选标题和摘要后,对37篇全文文章进行了评估,其中9项研究符合纳入标准。使用PROBAST评估偏倚风险,并提取有关算法、性能指标和临床应用的数据。纳入的研究显示出强大的预测性能,集成模型的准确率最高。然而,对侵入性监测的依赖、样本量小和回顾性设计限制了其可推广性。只有一项非人工智能研究报告了临床应用情况,凸显了转化差距。虽然人工智能模型在ICH预测方面显示出潜力,但方法学异质性和缺乏前瞻性验证阻碍了其临床应用。未来的研究应优先考虑标准化结果、模型可解释性和实际测试,以弥合这一差距。