Harris Sean, McGarvey Ronald, Thorsen Andreas, Thorsen Maggie
Jake Jabs College of Business and Entrepreneurship, Montana State University, Bozeman, MT, USA.
IESEG School of Management, Univ. Lille, CNRS, UMR 9221 - LEM - Lille Economie Management, F-59000 Lille, France.
J Oper Res Soc. 2025;76(5):984-999. doi: 10.1080/01605682.2024.2406236. Epub 2024 Sep 25.
Operating obstetric units in rural America is financially challenging in part due to low birth volume. Birth volume at a hospital decreases when birthers bypass it to go to a farther hospital. Beyond financial considerations, it is important from a healthcare equity perspective for hospitals to know whether certain subgroups of birthers avoid utilizing the hospital's services. This can better inform resource allocation decisions targeting those subgroups. In this paper, we use a nonlinear programming optimization model, inferred attractiveness gravity-based model (GBM), to estimate realized access to obstetric care at hospitals in Montana. We compare three variations of GBM and benchmark our results to a regression-based conditional logit model. Results indicate that hospital attractiveness varies across level of obstetric care provided and depends on the subgroup of birthers considered. While all GBMs produced smaller errors for hospitals with higher birth volume, our novel variant was more accurate for low volume hospitals. Bootstrapping analyses and resolving the models for population subgroups indicated large variations in hospital attractiveness. Research findings contribute to new knowledge about equity in access to obstetric care, the importance of considering population heterogeneity in GBMs, and the benefit of using hospital demand-based thresholds for GBMs in rural settings.
在美国农村地区运营产科单位在经济上具有挑战性,部分原因是低出生量。当产妇绕过一家医院前往更远的医院时,该医院的出生量就会下降。除了财务考虑之外,从医疗保健公平的角度来看,医院了解某些产妇亚群体是否避免使用该医院的服务非常重要。这可以更好地为针对这些亚群体的资源分配决策提供信息。在本文中,我们使用一种非线性规划优化模型,即基于吸引力推断的引力模型(GBM),来估计蒙大拿州各医院实际获得产科护理的情况。我们比较了GBM的三种变体,并将我们的结果与基于回归的条件logit模型进行了基准比较。结果表明,医院的吸引力因所提供的产科护理水平而异,并且取决于所考虑的产妇亚群体。虽然所有GBM对出生量较高的医院产生的误差较小,但我们的新变体对低出生量医院更为准确。对总体亚群体进行的自助分析和模型求解表明,医院吸引力存在很大差异。研究结果有助于获得有关产科护理公平性、在GBM中考虑人口异质性的重要性以及在农村地区使用基于医院需求的阈值进行GBM的益处等新知识。