Singh Vineet Kumar, Singh Ajeet Kumar, Parveen Sumaiya, Chauhan Madan Singh, Singh Prem Prakash, Patel Shiv Poojan, Chaudhary Dhirendra K, Singh Manish Kumar, Walia Rajan, Singh Ravi S, Singh Vidya Nand
Department of Physics, DDU Gorakhpur University, Gorakhpur 273009, India.
Department of Physics, Ewing Christian College, Prayagraj 211003, India.
ACS Omega. 2025 May 12;10(20):20341-20352. doi: 10.1021/acsomega.5c00035. eCollection 2025 May 27.
The power conversion efficiency (PCE) of single-junction perovskite solar cells has increased dramatically since their inception. In cesium lead iodide perovskite/silicon (CsPbI/Si) tandem solar cells (TSCs), Shockley-Read-Hall (SRH), radiative, and thermodynamic recombination losses are the primary source of voltage loss and govern the PCE of the device. Although the Shockley-Queisser (SQ) limit for power conversion efficiency of CsPbI/Si TSC is ∼40%, realizing this is difficult due to recombination losses and thermal instability of CsPbI. The proper choice of material and a suitable device structure can improve these. In this study, we used a thermally stable phase of CsPbI and optimize the SRH recombination loss in a CsPbI-based standalone inverted architecture solar cell device with configuration FTO/SnO/C/CsPbI/2F (4-(7-(4-bis-(4-methylphenyl) amino)-2,5-difluorophenyl) benzol [] [1,2,5] thiadiazol-4-yl) benzoic acid). An optimized standalone CsPbI-based solar cell exhibits outstanding performance with an open-circuit voltage of 1219.0 mV, short-circuit current density of 21.28 mA/cm, fill factor of 81.99%, and PCE of 21.27%. Further, we have integrated this optimized CsPbI-based standalone solar cell over a highly efficient silicon (Si) heterojunction solar cell, i.e., IZO/-nc-SiO /-a-Si:H/-c-Si/-a-Si:H/-nc-Si:H, in series to model the CsPbI/Si two-terminal (2T) TSC in current-matching conditions utilizing filtered spectrum. In an optimized condition, the PCEs of 2T monolithic and 4T mechanically stacked TSCs are 34.05 and 33.89%, respectively. All the simulation results are well corroborated with the experimental findings, providing a robust validation of the proposed simulation models and inspiring hope for future highly efficient device fabrication.
自单结钙钛矿太阳能电池问世以来,其功率转换效率(PCE)已大幅提高。在铯铅碘钙钛矿/硅(CsPbI/Si)串联太阳能电池(TSC)中,肖克利-里德-霍尔(SRH)复合、辐射复合和热动力学复合损耗是电压损失的主要来源,并决定了器件的PCE。尽管CsPbI/Si TSC功率转换效率的肖克利-奎塞尔(SQ)极限约为40%,但由于CsPbI的复合损耗和热不稳定性,实现这一目标具有挑战性。选择合适的材料和合适的器件结构可以改善这些问题。在本研究中,我们使用了热稳定相的CsPbI,并在具有FTO/SnO/C/CsPbI/2F(4-(7-(4-双-(4-甲基苯基)氨基)-2,5-二氟苯基)苯并[] [1,2,5]噻二唑-4-基)苯甲酸)结构的基于CsPbI的独立倒置结构太阳能电池器件中优化了SRH复合损耗。优化后的基于CsPbI的独立太阳能电池表现出优异的性能,开路电压为1219.0 mV,短路电流密度为21.28 mA/cm,填充因子为81.99%,PCE为21.27%。此外,我们将这种优化后的基于CsPbI的独立太阳能电池集成到高效硅(Si)异质结太阳能电池上,即IZO/-nc-SiO /-a-Si:H/-c-Si/-a-Si:H/-nc-Si:H,串联以在利用滤波光谱的电流匹配条件下对CsPbI/Si双端(2T)TSC进行建模。在优化条件下,2T单片和4T机械堆叠TSC的PCE分别为34.05%和33.89%。所有模拟结果都与实验结果很好地吻合,为所提出的模拟模型提供了有力验证,并为未来高效器件制造带来了希望。