do Espirito Santo Giovanna, de Souza Amanda, Amaral Gustavo Oliva, Alqualo Amanda Sardeli, Sousa Karolyne Dos Santos Jorge, Viegas Beatriz Louise Mendes, Prado João Paulo Dos Santos, Dos Santos Francisco Vieira, Correa Daniel Souza, Granito Renata Neves, Rennó Ana Claudia Muniz
Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Santos, SP 11015020, Brazil.
Nanotechnology National Laboratory for Agriculture (LNNA), EMBRAPA Instrumentação, São Carlos, SP 13560-970, Brazil.
ACS Omega. 2025 May 15;10(20):20257-20267. doi: 10.1021/acsomega.4c11383. eCollection 2025 May 27.
This study compared the physicochemical characteristics and biological effects of two 3D-printed biosilica (BS) scaffolds (grid and gyroid). The methods included scanning electron microscopy (SEM), porosity, mass loss, pH assessment, Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDS). The mechanical evaluation involved a compression test, and the in vitro tests used cell adhesion assays with osteoblastic and fibroblastic cell lines. SEM showed BS spicules in both models at day 0 with signs of degradation throughout the experimental immersion periods, forming a homogeneous network with interaction with alginate. Porosity measurements showed an average of 85.9% ± 0.9 for the grid model and 83.6% ± 0.7 for the gyroid model. The gyroid model demonstrated higher values in the compression test, a decrease in pH on day 1, and no difference for both models on days 3, 7, and 14. Mass loss was greatest in the gyroid model on day 21. FTIR tests showed characteristic peaks for ALG and BS. EDS detected silica (Si), chlorine (Cl), and calcium (Ca). In the cell adhesion assay, both models supported the adhesion and proliferation of L929 (fibroblast) and MC3T3-E1 (osteoblastic) cells, with the gyroid model showing better elongation and cell morphology. Overall, the gyroid model showed better physicochemical properties, higher mechanical strength, and improved biological performance compared to the grid model, making it a promising option for tissue engineering.
本研究比较了两种3D打印生物二氧化硅(BS)支架(网格状和螺旋状)的物理化学特性和生物学效应。方法包括扫描电子显微镜(SEM)、孔隙率、质量损失、pH评估、傅里叶变换红外光谱(FTIR)和能量色散X射线光谱(EDS)。力学评估采用压缩试验,体外试验使用成骨细胞和成纤维细胞系进行细胞黏附试验。SEM显示,在第0天,两种模型中均有BS针状结构,在整个实验浸泡期都有降解迹象,与藻酸盐相互作用形成均匀网络。孔隙率测量显示,网格模型的平均孔隙率为85.9%±0.9,螺旋状模型为83.6%±0.7。螺旋状模型在压缩试验中显示出更高的值,第1天pH值下降,两种模型在第3、7和14天无差异。第21天,螺旋状模型的质量损失最大。FTIR测试显示了ALG和BS的特征峰。EDS检测到硅(Si)、氯(Cl)和钙(Ca)。在细胞黏附试验中,两种模型均支持L929(成纤维细胞)和MC3T3-E1(成骨细胞)细胞的黏附和增殖,螺旋状模型显示出更好的伸长和细胞形态。总体而言,与网格模型相比,螺旋状模型显示出更好的物理化学性质、更高的机械强度和更好的生物学性能,使其成为组织工程的一个有前景的选择。