Suppr超能文献

具有可调降解性的介观结构复合生物陶瓷支架的三维打印。

Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability.

机构信息

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan 430074, China.

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China.

出版信息

Biomater Adv. 2022 Feb;133:112595. doi: 10.1016/j.msec.2021.112595. Epub 2021 Dec 9.

Abstract

Customisation of bioactivity and degradability of porous bioceramic scaffolds is a formidable challenge in the field of regenerative medicine. In this study, we developed gyroid-structured ternary composite scaffolds (biphasic calcium phosphate (BCP) and 45S5 bioglass® (BG)) using digital light processing 3D printing technology based on material and structural design. Additionally, the mechanical strength, bioactivity, degradability, and biocompatibility of the composite ceramic scaffolds were evaluated. The results revealed that BG reacted with BCP to generate major active crystalline phases of CaSiO and NaCa(PO). These active crystalline phases accelerated the exchange rate of Si, Ca, and PO with HCO in simulated body fluids and resulted in the rapid formation of carbonated hydroxyapatite (CHA), analogous to the formation of natural bone tissue. Interestingly, the precipitated CHA showed petal- and needle-like morphologies, which provided a large surface area to promote cell adhesion and proliferation. Furthermore, an increase in the BG content improved the degradability of ternary composite scaffolds after soaking in Tris-HCl solution. The tuneable degradability increased by three times at 30 wt% BG and sharply increased by 6.8 times at 40 wt% BG. This study provides a promising strategy to design scaffolds with improved bioactivity and tuneable degradability to assist a diverse population suffering from orthopedic conditions.

摘要

在再生医学领域,多孔生物陶瓷支架的生物活性和降解性的定制化是一项艰巨的挑战。在这项研究中,我们使用基于材料和结构设计的数字光处理 3D 打印技术开发了具有回旋状结构的三元复合支架(双相磷酸钙(BCP)和 45S5 生物玻璃®(BG))。此外,还评估了复合陶瓷支架的机械强度、生物活性、降解性和生物相容性。结果表明,BG 与 BCP 反应生成主要的活性结晶相 CaSiO 和 NaCa(PO)。这些活性结晶相加速了 Si、Ca 和 PO 与模拟体液中的 HCO 的交换速率,导致碳酸羟基磷灰石(CHA)的快速形成,类似于天然骨组织的形成。有趣的是,沉淀的 CHA 呈现出花瓣状和针状形态,提供了较大的表面积,促进了细胞的黏附和增殖。此外,BG 含量的增加提高了三元复合支架在 Tris-HCl 溶液中的降解性。在 30wt%BG 时,可调节的降解性增加了三倍,在 40wt%BG 时,急剧增加了 6.8 倍。这项研究为设计具有改善的生物活性和可调节的降解性的支架提供了一种有前途的策略,以帮助各种患有骨科疾病的人群。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验