Valadez Huerta Gerardo, Hisama Kaoru, Sato Katsutoshi, Nagaoka Katsutoshi, Koyama Michihisa
Research Initiative for Supra Materials, Shinshu University, Nagano 380-8553, Japan.
Institute for Aqua Regeneration, Shinshu University, Nagano 380-8553, Japan.
iScience. 2025 Apr 17;28(5):112470. doi: 10.1016/j.isci.2025.112470. eCollection 2025 May 16.
Supported nanoparticles offer unique opportunities for enhancing catalytic activity via strong metal-support interaction (SMSI). Even with state-of-the-art experimental techniques, the atomistic origin of this enhancement remains unclear, while current computational limitations make it difficult to provide a theoretical explanation. This study focused on clarifying the atomistic mechanism of SMSI by investigating N dissociation from Ru/LaCeO catalysts. Fast calculations using a neural network potential enabled the analysis of 328 complex nanoparticle models with varying degrees of site heterogeneity, encompassing over 25,768 adsorption sites. Our findings were validated against infrared spectra and helped identify catalyst configurations with enhanced catalytic activity, driven by SMSI. Specifically, the dissociation path of N molecules sandwiched between decoration cations on a nanoparticle near the support exhibited a low activation barrier. Our theoretical approach represents a major advancement in bridging the gap between simulation and empirical data and in our understanding of complex supported nanoparticle catalysts.
负载型纳米颗粒通过强金属-载体相互作用(SMSI)为提高催化活性提供了独特的机会。即使采用最先进的实验技术,这种增强作用的原子起源仍不清楚,而目前的计算限制使得难以提供理论解释。本研究通过研究Ru/LaCeO催化剂上的N解离来阐明SMSI的原子机制。使用神经网络势进行快速计算,能够分析328个具有不同程度位点异质性的复杂纳米颗粒模型,涵盖超过25768个吸附位点。我们的研究结果通过红外光谱得到验证,并有助于识别由SMSI驱动的具有增强催化活性的催化剂构型。具体而言,夹在载体附近纳米颗粒上的修饰阳离子之间的N分子的解离路径表现出较低的活化能垒。我们的理论方法在弥合模拟与实验数据之间的差距以及我们对复杂负载型纳米颗粒催化剂的理解方面取得了重大进展。