Suppr超能文献

使用回归样条在动态结构方程模型中对周期、趋势和时变效应进行建模。

Modeling Cycles, Trends and Time-Varying Effects in Dynamic Structural Equation Models with Regression Splines.

作者信息

Sørensen Ø, McCormick E M

机构信息

Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway.

Educational Statistics and Data Science, College of Education, University of Delaware, Newark, DE, USA.

出版信息

Multivariate Behav Res. 2025 Jun 2:1-16. doi: 10.1080/00273171.2025.2507297.

Abstract

Intensive longitudinal data with a large number of timepoints per individual are becoming increasingly common. Such data allow going beyond the classical growth model situation and studying population effects and individual variability not only in trends over time but also in autoregressive effects, cross-lagged effects, and the noise term. Dynamic structural equation models (DSEMs) have become very popular for analyzing intensive longitudinal data. However, when the data contain trends, cycles, or time-varying predictors which have nonlinear effects on the outcome, DSEMs require the practitioner to specify the correct parametric form of the effects, which may be challenging in practice. In this paper, we show how to alleviate this issue by introducing regression splines which are able to flexibly learn the underlying function shapes. Our main contribution is thus a building block to the DSEM modeler's toolkit, and we discuss smoothing priors and hierarchical smooth terms using the special cases of two-level lag-1 autoregressive and vector autoregressive models as examples. We illustrate in simulation studies how ignoring nonlinear trends may lead to biased parameter estimates, and then show how to use the proposed framework to model weekly cycles and long-term trends in diary data on alcohol consumption and perceived stress.

摘要

每个个体具有大量时间点的密集纵向数据正变得越来越普遍。此类数据使得能够超越经典增长模型的情形,不仅研究随时间变化趋势中的总体效应和个体变异性,还能研究自回归效应、交叉滞后效应以及噪声项。动态结构方程模型(DSEM)在分析密集纵向数据方面已变得非常流行。然而,当数据包含对结果具有非线性效应的趋势、周期或随时间变化的预测变量时,DSEM要求从业者指定效应的正确参数形式,这在实践中可能具有挑战性。在本文中,我们展示了如何通过引入能够灵活学习潜在函数形状的回归样条来缓解这一问题。因此,我们的主要贡献是为DSEM建模者的工具包提供了一个构建模块,并且我们以二级滞后1自回归模型和向量自回归模型的特殊情况为例讨论平滑先验和分层平滑项。我们在模拟研究中说明了忽略非线性趋势如何导致有偏差的参数估计,然后展示了如何使用所提出的框架对关于酒精消费和感知压力的日记数据中的每周周期和长期趋势进行建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验