Suppr超能文献

有向循环图的动态结构方程模型:结构可识别性问题。

Dynamic Structural Equation Models for Directed Cyclic Graphs: the Structural Identifiability Problem.

作者信息

Wang Yulin, Luo Yu, Wu Hulin, Miao Hongyu

机构信息

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.

School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.

出版信息

Stat Interface. 2019;12(3):365-375. doi: 10.4310/18-SII550.

Abstract

Network systems are commonly encountered and investigated in various disciplines, and network dynamics that refer to collective node state changes over time are one area of particular interests of many researchers. Recently, dynamic structural equation model (DSEM) has been introduced into the field of network dynamics as a powerful statistical inference tool. In this study, in recognition that parameter identifiability is the prerequisite of reliable parameter inference, a general and efficient approach is proposed for the first time to address the structural parameter identifiability problem of linear DSEMs for cyclic networks. The key idea is to transform a DSEM to an equivalent frequency domain representation, then Masons gain is employed to deal with feedback loops in cyclic networks when generating identifiability equations. The identifiability result of every unknown parameter is obtained with the identifiability matrix method. The proposed approach is computationally efficient because no symbolic or expensive numerical computations are involved, and can be applicable to a broad range of linear DSEMs. Finally, selected benchmark examples of brain networks, social networks and molecular interaction networks are given to illustrate the potential application of the proposed method, and we compare the results from DSEMs, state-transition models and ordinary differential equation models.

摘要

网络系统在各个学科中普遍存在且受到研究,而网络动力学(指节点集体状态随时间的变化)是许多研究人员特别感兴趣的领域之一。最近,动态结构方程模型(DSEM)作为一种强大的统计推断工具被引入到网络动力学领域。在本研究中,认识到参数可识别性是可靠参数推断的前提,首次提出了一种通用且高效的方法来解决循环网络线性DSEM的结构参数可识别性问题。关键思想是将DSEM转换为等效的频域表示,然后在生成可识别性方程时使用梅森增益来处理循环网络中的反馈回路。通过可识别性矩阵方法获得每个未知参数的可识别性结果。所提出的方法计算效率高,因为不涉及符号或昂贵的数值计算,并且可应用于广泛的线性DSEM。最后,给出了脑网络、社交网络和分子相互作用网络的选定基准示例,以说明所提出方法的潜在应用,并比较了DSEM、状态转移模型和常微分方程模型的结果。

相似文献

7
Extended space method for parameter identifiability of DAE systems.DAE系统参数可识别性的扩展空间方法。
ISA Trans. 2014 Sep;53(5):1476-80. doi: 10.1016/j.isatra.2013.12.014. Epub 2014 Jan 8.
9
Structural Identifiability of Dynamic Systems Biology Models.动态系统生物学模型的结构可识别性
PLoS Comput Biol. 2016 Oct 28;12(10):e1005153. doi: 10.1371/journal.pcbi.1005153. eCollection 2016 Oct.

本文引用的文献

2
The fundamental advantages of temporal networks.时间网络的基本优势。
Science. 2017 Nov 24;358(6366):1042-1046. doi: 10.1126/science.aai7488.
7
Network dynamics of the brain and influence of the epileptic seizure onset zone.大脑的网络动力学与癫痫发作起始区的影响。
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5321-30. doi: 10.1073/pnas.1401752111. Epub 2014 Nov 17.
9
Learning graphical model parameters with approximate marginal inference.用近似边缘推理学习图形模型参数。
IEEE Trans Pattern Anal Mach Intell. 2013 Oct;35(10):2454-67. doi: 10.1109/TPAMI.2013.31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验