Ding Qihang, Liu Haowei, Yan Lishan, Chen Liang, Chen Yu, Kim Jong Seung, Mei Ling
Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
Department of Chemistry, Korea University, Seoul, 02841, South Korea.
Angew Chem Int Ed Engl. 2025 Aug 4;64(32):e202505911. doi: 10.1002/anie.202505911. Epub 2025 Jun 12.
Melanoma is characterized by rapid growth and high invasiveness, resulting in an exceptionally high malignancy and a significant propensity for metastasis. Current therapeutic modalities, such as chemotherapy and radiotherapy, exhibit limited efficacy due to severe side effects and immunosuppressive effects. Consequently, the development of precise and effective integrated therapeutic strategies is of paramount importance. Here, we report a multifunctional and multienzyme active nanosystem (FeCP@PDA-GOx) that synergistically integrates starvation therapy, chemodynamic therapy, mild photothermal therapy (mPTT), and immunotherapy to achieve multidimensional therapeutic effects. This nanoplatform harnesses the enzymatic activities of glucose oxidase, peroxidase, oxidase, and catalase to enhance tumor microenvironment modulation and drug delivery efficiency, ultimately inducing ferroptosis in tumor cells. The system also establishes a positive feedback loop to further amplify its catalytic performance. Additionally, it effectively suppresses the expression of heat shock proteins in tumor cells, thereby augmenting the therapeutic efficacy of mPTT. Moreover, the system activates robust immune responses, suppressing lung metastasis and eliciting systemic antitumor effects to inhibit the growth of distal tumors. Experimental results demonstrate that this multifunctional nanoplatform exhibits exceptional therapeutic efficacy and safety in melanoma treatment, laying a solid foundation for the advancement of personalized medicine and intelligent therapeutic strategies.
黑色素瘤的特点是生长迅速且侵袭性强,导致其具有极高的恶性程度和显著的转移倾向。目前的治疗方式,如化疗和放疗,由于严重的副作用和免疫抑制作用,疗效有限。因此,开发精确有效的综合治疗策略至关重要。在此,我们报道了一种多功能多酶活性纳米系统(FeCP@PDA-GOx),该系统将饥饿疗法、化学动力疗法、温和光热疗法(mPTT)和免疫疗法协同整合,以实现多维治疗效果。这种纳米平台利用葡萄糖氧化酶、过氧化物酶、氧化酶和过氧化氢酶的酶活性来增强肿瘤微环境调节和药物递送效率,最终诱导肿瘤细胞发生铁死亡。该系统还建立了一个正反馈回路以进一步放大其催化性能。此外,它有效地抑制肿瘤细胞中热休克蛋白的表达,从而增强mPTT的治疗效果。而且,该系统激活强大的免疫反应,抑制肺转移并引发全身抗肿瘤效应以抑制远处肿瘤的生长。实验结果表明,这种多功能纳米平台在黑色素瘤治疗中表现出卓越的治疗效果和安全性,为个性化医学和智能治疗策略的发展奠定了坚实基础。
ACS Appl Mater Interfaces. 2025-7-16
ACS Appl Mater Interfaces. 2024-4-16
J Colloid Interface Sci. 2025-11-15
J Control Release. 2025-1-10
Smart Med. 2023-4-11
Trends Immunol. 2024-8