Gruber Gabriel, Nicolini Luis Fernando, Ribeiro Marx, Lerchl Tanja, Wilke Hans-Joachim, Jaramillo Héctor Enrique, Senner Veit, Kirschke Jan S, Nispel Kati
Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Department of Mechanical Engineering, Federal University of Santa Maria, Av. Santa Maria, Brazil.
Front Bioeng Biotechnol. 2024 Jun 5;12:1391957. doi: 10.3389/fbioe.2024.1391957. eCollection 2024.
Numerical modeling of the intervertebral disc (IVD) is challenging due to its complex and heterogeneous structure, requiring careful selection of constitutive models and material properties. A critical aspect of such modeling is the representation of annulus fibers, which significantly impact IVD biomechanics. This study presents a comparative analysis of different methods for fiber reinforcement in the annulus fibrosus of a finite element (FE) model of the human IVD. We utilized a reconstructed L4-L5 IVD geometry to compare three fiber modeling approaches: the anisotropic Holzapfel-Gasser-Ogden (HGO) model (HGO fiber model) and two sets of structural rebar elements with linear-elastic (linear rebar model) and hyperelastic (nonlinear rebar model) material definitions, respectively. Prior to calibration, we conducted a sensitivity analysis to identify the most important model parameters to be calibrated and improve the efficiency of the calibration. Calibration was performed using a genetic algorithm and range of motion (RoM) data from a published study with eight specimens tested under four loading scenarios. For validation, intradiscal pressure (IDP) measurements from the same study were used, along with additional RoM data from a separate publication involving five specimens subjected to four different loading conditions. The sensitivity analysis revealed that most parameters, except for the Poisson ratio of the annulus fibers and C from the nucleus, significantly affected the RoM and IDP outcomes. Upon calibration, the HGO fiber model demonstrated the highest accuracy (R = 0.95), followed by the linear (R = 0.89) and nonlinear rebar models (R = 0.87). During the validation phase, the HGO fiber model maintained its high accuracy (RoM R = 0.85; IDP R = 0.87), while the linear and nonlinear rebar models had lower validation scores (RoM R = 0.71 and 0.69; IDP R = 0.86 and 0.8, respectively). The results of the study demonstrate a successful calibration process that established good agreement with experimental data. Based on our findings, the HGO fiber model appears to be a more suitable option for accurate IVD FE modeling considering its higher fidelity in simulation results and computational efficiency.
由于椎间盘(IVD)结构复杂且异质,对其进行数值模拟具有挑战性,这需要仔细选择本构模型和材料特性。此类建模的一个关键方面是纤维环纤维的表示,其对IVD生物力学有显著影响。本研究对人类IVD有限元(FE)模型纤维环中不同的纤维增强方法进行了比较分析。我们利用重建的L4 - L5 IVD几何结构来比较三种纤维建模方法:各向异性的霍尔扎佩尔 - 加塞尔 - 奥格登(HGO)模型(HGO纤维模型)以及两组分别具有线弹性(线性钢筋模型)和超弹性(非线性钢筋模型)材料定义的结构钢筋单元。在校准之前,我们进行了敏感性分析,以确定要校准的最重要模型参数并提高校准效率。使用遗传算法和来自一项已发表研究的运动范围(RoM)数据进行校准,该研究对八个标本在四种加载场景下进行了测试。为了进行验证,使用了同一研究中的椎间盘内压力(IDP)测量值,以及来自另一篇单独出版物的额外RoM数据,该出版物涉及五个标本在四种不同加载条件下的情况。敏感性分析表明,除了纤维环纤维的泊松比和髓核的C之外,大多数参数对RoM和IDP结果有显著影响。校准后,HGO纤维模型显示出最高的准确性(R = 0.95),其次是线性(R = 0.89)和非线性钢筋模型(R = 0.87)。在验证阶段,HGO纤维模型保持了其高准确性(RoM R = 0.85;IDP R = 0.87),而线性和非线性钢筋模型的验证得分较低(RoM R分别为0.71和0.69;IDP R分别为0.86和0.8)。该研究结果表明校准过程成功,与实验数据达成了良好的一致性。基于我们的研究结果,考虑到其在模拟结果中的更高保真度和计算效率,HGO纤维模型似乎是准确的IVD有限元建模的更合适选择。
Front Bioeng Biotechnol. 2024-6-5
Front Bioeng Biotechnol. 2015-6-3
Technol Health Care. 2017-7-20
Comput Methods Biomech Biomed Engin. 2024-9
Int J Numer Method Biomed Eng. 2025-8
Int J Numer Method Biomed Eng. 2025-6
Front Bioeng Biotechnol. 2025-1-3
Front Bioeng Biotechnol. 2024-10-15
J Funct Biomater. 2021-7-31
Front Bioeng Biotechnol. 2021-6-17
Comput Methods Biomech Biomed Engin. 2021-11