文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

椎间盘建模的有限元比较研究:霍尔扎菲尔-加塞尔-奥格登模型与结构钢筋模型对比

Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars.

作者信息

Gruber Gabriel, Nicolini Luis Fernando, Ribeiro Marx, Lerchl Tanja, Wilke Hans-Joachim, Jaramillo Héctor Enrique, Senner Veit, Kirschke Jan S, Nispel Kati

机构信息

Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Department of Mechanical Engineering, Federal University of Santa Maria, Av. Santa Maria, Brazil.

出版信息

Front Bioeng Biotechnol. 2024 Jun 5;12:1391957. doi: 10.3389/fbioe.2024.1391957. eCollection 2024.


DOI:10.3389/fbioe.2024.1391957
PMID:38903189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11188472/
Abstract

Numerical modeling of the intervertebral disc (IVD) is challenging due to its complex and heterogeneous structure, requiring careful selection of constitutive models and material properties. A critical aspect of such modeling is the representation of annulus fibers, which significantly impact IVD biomechanics. This study presents a comparative analysis of different methods for fiber reinforcement in the annulus fibrosus of a finite element (FE) model of the human IVD. We utilized a reconstructed L4-L5 IVD geometry to compare three fiber modeling approaches: the anisotropic Holzapfel-Gasser-Ogden (HGO) model (HGO fiber model) and two sets of structural rebar elements with linear-elastic (linear rebar model) and hyperelastic (nonlinear rebar model) material definitions, respectively. Prior to calibration, we conducted a sensitivity analysis to identify the most important model parameters to be calibrated and improve the efficiency of the calibration. Calibration was performed using a genetic algorithm and range of motion (RoM) data from a published study with eight specimens tested under four loading scenarios. For validation, intradiscal pressure (IDP) measurements from the same study were used, along with additional RoM data from a separate publication involving five specimens subjected to four different loading conditions. The sensitivity analysis revealed that most parameters, except for the Poisson ratio of the annulus fibers and C from the nucleus, significantly affected the RoM and IDP outcomes. Upon calibration, the HGO fiber model demonstrated the highest accuracy (R = 0.95), followed by the linear (R = 0.89) and nonlinear rebar models (R = 0.87). During the validation phase, the HGO fiber model maintained its high accuracy (RoM R = 0.85; IDP R = 0.87), while the linear and nonlinear rebar models had lower validation scores (RoM R = 0.71 and 0.69; IDP R = 0.86 and 0.8, respectively). The results of the study demonstrate a successful calibration process that established good agreement with experimental data. Based on our findings, the HGO fiber model appears to be a more suitable option for accurate IVD FE modeling considering its higher fidelity in simulation results and computational efficiency.

摘要

由于椎间盘(IVD)结构复杂且异质,对其进行数值模拟具有挑战性,这需要仔细选择本构模型和材料特性。此类建模的一个关键方面是纤维环纤维的表示,其对IVD生物力学有显著影响。本研究对人类IVD有限元(FE)模型纤维环中不同的纤维增强方法进行了比较分析。我们利用重建的L4 - L5 IVD几何结构来比较三种纤维建模方法:各向异性的霍尔扎佩尔 - 加塞尔 - 奥格登(HGO)模型(HGO纤维模型)以及两组分别具有线弹性(线性钢筋模型)和超弹性(非线性钢筋模型)材料定义的结构钢筋单元。在校准之前,我们进行了敏感性分析,以确定要校准的最重要模型参数并提高校准效率。使用遗传算法和来自一项已发表研究的运动范围(RoM)数据进行校准,该研究对八个标本在四种加载场景下进行了测试。为了进行验证,使用了同一研究中的椎间盘内压力(IDP)测量值,以及来自另一篇单独出版物的额外RoM数据,该出版物涉及五个标本在四种不同加载条件下的情况。敏感性分析表明,除了纤维环纤维的泊松比和髓核的C之外,大多数参数对RoM和IDP结果有显著影响。校准后,HGO纤维模型显示出最高的准确性(R = 0.95),其次是线性(R = 0.89)和非线性钢筋模型(R = 0.87)。在验证阶段,HGO纤维模型保持了其高准确性(RoM R = 0.85;IDP R = 0.87),而线性和非线性钢筋模型的验证得分较低(RoM R分别为0.71和0.69;IDP R分别为0.86和0.8)。该研究结果表明校准过程成功,与实验数据达成了良好的一致性。基于我们的研究结果,考虑到其在模拟结果中的更高保真度和计算效率,HGO纤维模型似乎是准确的IVD有限元建模的更合适选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/f304040851d4/fbioe-12-1391957-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/dc93ef616ed6/fbioe-12-1391957-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/7f8d9db1e52c/fbioe-12-1391957-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/3f9a5af747fd/fbioe-12-1391957-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/35087510d794/fbioe-12-1391957-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/2b086367a934/fbioe-12-1391957-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/f304040851d4/fbioe-12-1391957-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/dc93ef616ed6/fbioe-12-1391957-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/7f8d9db1e52c/fbioe-12-1391957-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/3f9a5af747fd/fbioe-12-1391957-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/35087510d794/fbioe-12-1391957-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/2b086367a934/fbioe-12-1391957-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507d/11188472/f304040851d4/fbioe-12-1391957-g006.jpg

相似文献

[1]
Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars.

Front Bioeng Biotechnol. 2024-6-5

[2]
On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel-Gasser-Ogden Material.

Front Bioeng Biotechnol. 2015-6-3

[3]
Influence of structural and material property uncertainties on biomechanics of intervertebral discs - Implications for disc tissue engineering.

J Mech Behav Biomed Mater. 2021-10

[4]
A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model.

Technol Health Care. 2017-7-20

[5]
A Hybrid Microstructural-Continuum Multiscale Approach for Modeling Hyperelastic Fibrous Soft Tissue.

J Elast. 2021-8

[6]
Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent.

J Biomech. 2014-6-17

[7]
Biomechanical Effect of L -L Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study.

Orthop Surg. 2020-6

[8]
Biomechanical analysis of the cervical spine segment as a method for studying the functional and dynamic anatomy of the human neck.

Ann Anat. 2022-2

[9]
Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.

J Biomech Eng. 2011-10

[10]
Calibration of Holzapfel-Gasser-Ogden collateral ligament properties in a hybrid post-arthroplasty knee joint model for laxity testing.

Comput Methods Biomech Biomed Engin. 2024-9

引用本文的文献

[1]
Can Multi-Vertebral CT-Based Finite Element Models Accurately Predict Strains? An In Vitro Validation Study.

Int J Numer Method Biomed Eng. 2025-8

[2]
Optimisation of Intervertebral Disc Mechanical Properties and the Impact of Vertebral Alignment in Subject-Specific Finite Element Models.

Int J Numer Method Biomed Eng. 2025-6

[3]
Integrating finite element analysis and physics-informed neural networks for biomechanical modeling of the human lumbar spine.

N Am Spine Soc J. 2025-2-17

[4]
From MRI to FEM: an automated pipeline for biomechanical simulations of vertebrae and intervertebral discs.

Front Bioeng Biotechnol. 2025-1-3

[5]
A review of human cornea finite element modeling: geometry modeling, constitutive modeling, and outlooks.

Front Bioeng Biotechnol. 2024-10-15

本文引用的文献

[1]
An experimental-numerical method for the calibration of finite element models of the lumbar spine.

Med Eng Phys. 2022-9

[2]
Finite Element Method for the Evaluation of the Human Spine: A Literature Overview.

J Funct Biomater. 2021-7-31

[3]
Influence of structural and material property uncertainties on biomechanics of intervertebral discs - Implications for disc tissue engineering.

J Mech Behav Biomed Mater. 2021-10

[4]
Sensitivity of Intervertebral Disc Finite Element Models to Internal Geometric and Non-geometric Parameters.

Front Bioeng Biotechnol. 2021-6-17

[5]
Prediction of biomechanical responses of human lumbar discs - a stochastic finite element model analysis.

Comput Methods Biomech Biomed Engin. 2021-11

[6]
Development and Validation of a Computationally Efficient Finite Element Model of the Human Lumbar Spine: Application to Disc Degeneration.

Int J Spine Surg. 2020-8

[7]
Biomechanical Effect of L -L Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study.

Orthop Surg. 2020-6

[8]
Lumbar spinal ligament characteristics extracted from stepwise reduction experiments allow for preciser modeling than literature data.

Biomech Model Mechanobiol. 2020-6

[9]
Relationship between intervertebral disc and facet joint degeneration: A probabilistic finite element model study.

J Biomech. 2020-3-26

[10]
Material properties of human lumbar intervertebral discs across strain rates.

Spine J. 2019-7-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索