Suppr超能文献

使用直接口服抗凝剂的静脉血栓栓塞患者的出血预测评分

Bleeding prediction scores in patients with venous thromboembolism using direct oral anticoagulants.

作者信息

Wu Guilan, Chen Jiana, Chen Yunda, Niu Peiguang, Chang Sijie, Ma Fuxin, Wang Chunhua, Lin Xiangsheng, Liu Xiumei, Su Jun, Dai Hengfen, Liu Yuxin, Zhang Jinhua

机构信息

School of Pharmacy, Fujian Medical University, Fuzhou, China.

Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, #18 Daoshan Road, Fuzhou, 350001, China.

出版信息

Ann Hematol. 2025 Jun 2. doi: 10.1007/s00277-025-06434-7.

Abstract

We aimed to identify factors associated with bleeding in patients with venous thromboembolism (VTE) when using direct oral anticoagulants (DOACs), to construct and externally validate a predictive model for bleeding, and to provide a validated tool for clinical assessment of bleeding. The prediction model in the development cohort was constructed using logistic regression and visualized through a Nomogram. We conducted external validation of the model. The accuracy and calibration were evaluated through the area under the curve (AUC), calibration curves, and the Hosmer-Lemeshow test. This multicenter retrospective study recruited 1121 patients treated with DOACs for VTE. The training set consisted of 806 patients from 11 centers and the external validation set consisted of 315 patients from 9 centers. The Alfalfa-VTE-Major model (AUC = 0.883) is composed of five variables: Age ≥ 65 years, history of bleeding, malignancy, and coadministration of antiplatelet drugs/nonsteroidal antiinflammatory drugs (NSAIDs) were independent risk factors for major bleeding, and coadministration of gastrointestinal protectants was a protective factor. The Alfalfa-VTE-Minor model (AUC = 0.875) was composed of five independent risk factors for minor bleeding variables: Age ≥ 65 years, anemia, history of bleeding, vascular disease, and coadministration of antiplatelet drugs/NSAIDs. We externally validate the currently widely used VTE bleeding model. The predictive power of the three bleeding scores was RIETE (AUC = 0.773), VTE-BLEED (AUC = 0.746), and Hokusai (AUC = 0.558) in descending order. We constructed and externally validated a predictive model for the occurrence of major and minor bleeding in VTE patients using DOACs. Both models have good predictive value and may be effective tools to help reduce the incidence of bleeding in patients with DOACs.

摘要

我们旨在确定使用直接口服抗凝剂(DOACs)治疗静脉血栓栓塞症(VTE)患者时与出血相关的因素,构建并外部验证出血预测模型,并提供经过验证的出血临床评估工具。在开发队列中,使用逻辑回归构建预测模型,并通过列线图进行可视化。我们对该模型进行了外部验证。通过曲线下面积(AUC)、校准曲线和Hosmer-Lemeshow检验评估准确性和校准情况。这项多中心回顾性研究纳入了1121例接受DOACs治疗VTE的患者。训练集由来自11个中心的806例患者组成,外部验证集由来自9个中心的315例患者组成。苜蓿-VTE-大出血模型(AUC = 0.883)由五个变量组成:年龄≥65岁、出血史、恶性肿瘤以及联合使用抗血小板药物/非甾体抗炎药(NSAIDs)是大出血的独立危险因素,联合使用胃肠道保护剂是保护因素。苜蓿-VTE-小出血模型(AUC = 0.875)由五个小出血变量的独立危险因素组成:年龄≥65岁、贫血、出血史、血管疾病以及联合使用抗血小板药物/NSAIDs。我们对目前广泛使用的VTE出血模型进行了外部验证。三种出血评分的预测能力按降序排列依次为RIETE(AUC = 0.773)、VTE-BLEED(AUC = 0.746)和Hokusai(AUC = 0.558)。我们构建并外部验证了使用DOACs治疗VTE患者发生大出血和小出血的预测模型。两个模型均具有良好的预测价值,可能是有助于降低DOACs患者出血发生率的有效工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验