Suppr超能文献

基于人工智能的对话语音分析在检测认知衰退方面的效用。

Utility of artificial intelligence-based conversation voice analysis for detecting cognitive decline.

作者信息

Kuroda Takeshi, Ono Kenjiro, Onishi Masaki, Murakami Kouzou, Shoji Daiki, Kosuge Shota, Ishida Atsushi, Hieda Sotaro, Takahashi Masato, Nakashima Hisashi, Ito Yoshinori, Murakami Hidetomo

机构信息

Department of Neurology, Showa University School of Medicine, Tokyo, Japan.

Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.

出版信息

PLoS One. 2025 Jun 2;20(6):e0325177. doi: 10.1371/journal.pone.0325177. eCollection 2025.

Abstract

Recent developments in artificial intelligence (AI) have introduced new technologies that can aid in detecting cognitive decline. This study developed a voice-based AI model that screens for cognitive decline using only a short conversational voice sample. The process involved collecting voice samples, applying machine learning (ML), and confirming accuracy through test data. The AI model extracts multiple voice features from the collected voice data to detect potential signs of cognitive impairment. Data labeling for ML was based on Mini-Mental State Examination scores: scores of 23 or lower were labeled as "cognitively declined (CD)," while scores above 24 were labeled as "cognitively normal (CN)." A fully coupled neural network architecture was employed for deep learning, using voice samples from 263 patients. Twenty voice samples, each comprising a one-minute conversation, were used for accuracy evaluation. The developed AI model achieved an accuracy of 0.950 in discriminating between CD and CN individuals, with a sensitivity of 0.875, specificity of 1.000, and an average area under the curve of 0.990. This voice AI model shows promise as a cognitive screening tool accessible via mobile devices, requiring no specialized environments or equipment, and can help detect CD, offering individuals the opportunity to seek medical attention.

摘要

人工智能(AI)的最新发展引入了有助于检测认知衰退的新技术。本研究开发了一种基于语音的人工智能模型,该模型仅使用简短的对话语音样本就能筛查认知衰退。该过程包括收集语音样本、应用机器学习(ML)以及通过测试数据确认准确性。人工智能模型从收集到的语音数据中提取多种语音特征,以检测认知障碍的潜在迹象。用于机器学习的数据标注基于简易精神状态检查表得分:得分23分及以下被标注为“认知衰退(CD)”,而得分高于24分则被标注为“认知正常(CN)”。使用来自263名患者的语音样本,采用全耦合神经网络架构进行深度学习。使用20个语音样本(每个样本包含一分钟的对话)进行准确性评估。所开发的人工智能模型在区分认知衰退个体和认知正常个体方面的准确率达到0.950,灵敏度为0.875,特异性为1.000,曲线下平均面积为0.990。这种语音人工智能模型有望成为一种可通过移动设备使用的认知筛查工具,无需专门的环境或设备,并且可以帮助检测认知衰退,为个人提供寻求医疗关注的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2172/12129157/8ba2b028d2e7/pone.0325177.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验