Suppr超能文献

利用语音实现的人工智能端到端阿尔茨海默病检测与评估

Artificial Intelligence-Enabled End-To-End Detection and Assessment of Alzheimer's Disease Using Voice.

作者信息

Agbavor Felix, Liang Hualou

机构信息

School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.

出版信息

Brain Sci. 2022 Dec 23;13(1):28. doi: 10.3390/brainsci13010028.

Abstract

There is currently no simple, widely available screening method for Alzheimer's disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artificial intelligence (AI)-powered end-to-end system to detect AD and predict its severity directly from voice recordings. At the core of our system is the pre-trained data2vec model, the first high-performance self-supervised algorithm that works for speech, vision, and text. Our model was internally evaluated on the ADReSSo (Alzheimer's Dementia Recognition through Spontaneous Speech ) dataset containing voice recordings of subjects describing the Cookie Theft picture, and externally validated on a test dataset from DementiaBank. The AI model can detect AD with average area under the curve (AUC) of 0.846 and 0.835 on held-out and external test set, respectively. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit -value = 0.9616). Moreover, the model can reliably predict the subject's cognitive testing score solely based on raw voice recordings. Our study demonstrates the feasibility of using the AI-powered end-to-end model for early AD diagnosis and severity prediction directly based on voice, showing its potential for screening Alzheimer's disease in a community setting.

摘要

目前尚无简单且广泛可用的阿尔茨海默病(AD)筛查方法,部分原因在于AD的诊断复杂,通常需要昂贵且有时具有侵入性的检测,而这些检测在高度专业化的临床环境之外并不常见。在此,我们开发了一种由人工智能(AI)驱动的端到端系统,可直接从语音记录中检测AD并预测其严重程度。我们系统的核心是预训练的数据2vec模型,这是首个适用于语音、视觉和文本的高性能自监督算法。我们的模型在包含描述“偷饼干”图片的受试者语音记录的ADReSSo(通过自发语音识别阿尔茨海默病痴呆)数据集上进行了内部评估,并在来自痴呆症银行的测试数据集上进行了外部验证。该AI模型在保留测试集和外部测试集上检测AD的曲线下面积(AUC)平均值分别为0.846和0.835。该模型校准良好(Hosmer-Lemeshow拟合优度值 = 0.9616)。此外,该模型仅基于原始语音记录就能可靠地预测受试者的认知测试分数。我们的研究证明了使用由AI驱动的端到端模型直接基于语音进行AD早期诊断和严重程度预测的可行性,显示了其在社区环境中筛查阿尔茨海默病的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9324/9856143/ed223fdeb890/brainsci-13-00028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验