Suppr超能文献

视觉信号检测。III. 贝叶斯对先验知识和互相关的应用。

Visual signal detection. III. On Bayesian use of prior knowledge and cross correlation.

作者信息

Burgess A

出版信息

J Opt Soc Am A. 1985 Sep;2(9):1498-507. doi: 10.1364/josaa.2.001498.

Abstract

Experimental results are presented demonstrating that humans can make effective use of prior knowledge for detecting and identifying visual signals in static noise. The signals were selected from an orthogonal Hadamard set. There was a marked drop in detection performance when observers did not know which signal was present. The drop was in excellent quantitative agreement with that predicted by the theory of signal detectability. The statistical efficiency of the human observers was 33% in both cases (detection with and without prior knowledge). When interpreted in terms of channel uncertainty, the detection results demonstrated an upper limit of 10 orthogonal, uncertain channels. The statistical efficiency for the Hadamard signal-identification task was 40%. All the results are consistent with the standard theory of signal detectability based on a Bayesian maximum a posteriori probability decision strategy using cross correlation (or matched filtering) of expected signal profiles with those present in the display.

摘要

实验结果表明,人类能够有效利用先验知识在静态噪声中检测和识别视觉信号。这些信号选自正交哈达玛集。当观察者不知道存在哪个信号时,检测性能显著下降。这种下降与信号检测理论预测的结果在数量上非常吻合。在两种情况下(有和没有先验知识的检测),人类观察者的统计效率均为33%。从通道不确定性的角度解释,检测结果表明存在10个正交、不确定通道的上限。哈达玛信号识别任务的统计效率为40%。所有结果都与基于贝叶斯最大后验概率决策策略的标准信号检测理论一致,该策略使用预期信号轮廓与显示器中存在的信号轮廓进行互相关(或匹配滤波)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验