Suppr超能文献

一种用于全局优化的新型部落增强竞争与成员合作算法。

A novel enhanced competition of tribes and cooperation of members algorithm for global optimization.

作者信息

Liu Yu, Fu Maosheng, Jia Chaochuan, Liu Huaiqing, Wu Zongling, Peng Wei, Liu Zhengyu

机构信息

School of Electronics and Information Engineering, West Anhui University, Lu'an, China.

出版信息

PLoS One. 2025 Jun 2;20(6):e0324944. doi: 10.1371/journal.pone.0324944. eCollection 2025.

Abstract

The competition of tribes and cooperation of members algorithm (CTCM) is a novel swarm intelligence algorithm, which increases the diversity of the population to a certain extent through tribal competition and member cooperation mechanisms. However, when dealing with certain complex optimization problems, the algorithm may converge to a local optimal solution prematurely, thereby failing to reach the global optimal solution. To enhance the algorithm's global optimization capabilities and stability, an enhanced CTCM (CTCMKT) is proposed, which integrates a joint strategy of Kent chaotic mapping and t- distribution mutation. This integration effectively prevents premature convergence to local optimal solutions, ensuring that the algorithm does not miss the global optimal solution during the optimization process and the algorithm's stability is significantly enhanced. CEC2021 and 23 benchmark functions are used to test the effectiveness and feasibility of the CTCMKT. By minimizing the fitness value, the CTCMKT is contrasted with other algorithms. Experimental results reveal that the CTCMKT has a superior global optimization ability compared to these algorithms. It can efficiently balance exploration and exploitation to reach the optimal solution. Additionally, the CTCMKT can effectively boost the convergence speed, calculation accuracy, and stability. Engineering application results show that the improved CTCMKT algorithm can solve practical application problems.

摘要

部落竞争与成员合作算法(CTCM)是一种新型群体智能算法,它通过部落竞争和成员合作机制在一定程度上增加了种群的多样性。然而,在处理某些复杂优化问题时,该算法可能会过早收敛到局部最优解,从而无法达到全局最优解。为了增强算法的全局优化能力和稳定性,提出了一种改进的CTCM(CTCMKT),它集成了肯特混沌映射和t分布变异的联合策略。这种集成有效地防止了过早收敛到局部最优解,确保算法在优化过程中不会错过全局最优解,并且算法的稳定性得到显著增强。使用CEC2021和23个基准函数来测试CTCMKT的有效性和可行性。通过最小化适应度值,将CTCMKT与其他算法进行对比。实验结果表明,与这些算法相比,CTCMKT具有卓越的全局优化能力。它可以有效地平衡探索和利用以达到最优解。此外,CTCMKT可以有效地提高收敛速度、计算精度和稳定性。工程应用结果表明,改进后的CTCMKT算法能够解决实际应用问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1158/12129360/b6ebb80c36a9/pone.0324944.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验