Zhu Xuemei, Zhang Jinsi, Jia Chaochuan, Liu Yu, Fu Maosheng
Experimental Training Teaching Management Department, West Anhui University, Yu'an District, Lu'an 237012, China.
School of Electrical and Optoelectronic Engineering, West Anhui University, Yu'an District, Lu'an 237012, China.
Biomimetics (Basel). 2025 Apr 11;10(4):236. doi: 10.3390/biomimetics10040236.
This study addresses the premature convergence issue of the Black-Winged Kite Algorithm (BKA) in high-dimensional optimization problems by proposing an enhanced hybrid algorithm (BKAPI). First of all, BKA provides dynamic global exploration through its hovering and dive attack strategies, while Particle Swarm Optimization (PSO) enhances local exploitation via its velocity-based search mechanism. Then, PSO enables efficient local refinement, and Differential Evolution (DE) introduces a differential mutation strategy to maintain population diversity and prevent premature convergence. Finally, the integration ensures a balanced exploration-exploitation trade-off, overcoming BKA's sensitivity to parameter settings and insufficient local search capabilities. By combining these mechanisms, BKAPI achieves a robust balance, significantly improving convergence speed and computational accuracy. To validate its effectiveness, the performance of the enhanced hybrid algorithm is rigorously evaluated against seven other intelligent optimization algorithms using the CEC 2017 and CEC 2022 benchmark test functions. Experimental results demonstrate that the proposed integrated strategy surpasses other advanced algorithms, highlighting its superiority and strong application potential. Additionally, the algorithm's practical utility is further confirmed through its successful application to three real-world engineering problems: welding beam design, the Himmelblau function, and visible light positioning, underscoring the effectiveness and versatility of the proposed approach.
本研究通过提出一种增强型混合算法(BKAPI)来解决黑翅鸢算法(BKA)在高维优化问题中的早熟收敛问题。首先,BKA通过其悬停和俯冲攻击策略提供动态全局探索,而粒子群优化算法(PSO)则通过其基于速度的搜索机制增强局部开发能力。然后,PSO实现高效的局部细化,差分进化算法(DE)引入差分变异策略以保持种群多样性并防止早熟收敛。最后,这种整合确保了探索与开发之间的平衡,克服了BKA对参数设置的敏感性以及局部搜索能力不足的问题。通过结合这些机制,BKAPI实现了稳健的平衡,显著提高了收敛速度和计算精度。为了验证其有效性,使用CEC 2017和CEC 2022基准测试函数,针对其他七种智能优化算法对增强型混合算法的性能进行了严格评估。实验结果表明,所提出的集成策略优于其他先进算法,突出了其优越性和强大的应用潜力。此外,该算法通过成功应用于三个实际工程问题:焊接梁设计、Himmelblau函数和可见光定位,进一步证实了其实用性,强调了所提方法的有效性和通用性。