Suppr超能文献

基于改进粒子群优化算法的多AGV任务分配优化

Optimization of multi-AGV task allocation based on an improved PSO algorithm.

作者信息

Zhu Yazhen, Song Qing, Li Meng

机构信息

School of Electrical Engineering, University of Jinan, Jinan, China.

出版信息

PLoS One. 2025 Jun 2;20(6):e0321616. doi: 10.1371/journal.pone.0321616. eCollection 2025.

Abstract

Research on task allocation for multiple automated guided vehicles (AGVs) in factory environments is a key topic in intelligent manufacturing. Existing studies often struggle to balance fairness and priority in task allocation, leading to low AGV utilization and high no-load distances. Moreover, the stability and applicability of task allocation algorithms in real-world production environments face significant challenges. To address these issues, a mathematical model is formulated with the objective of minimizing the no-load distances of all AGVs in material delivery tasks. The model is subsequently enhanced by incorporating task allocation balance and priority. To solve the optimization model, an improved particle swarm optimization algorithm is proposed, and extensive simulation experiments are conducted based on a real factory environment. By comparing the optimization results of the proposed algorithm with those of the latest multi-population genetic algorithm (MGA) and the market-based bundle task allocation method (MBTA), it is evident that both the proposed algorithm and MGA achieve higher AGV utilization and shorter total task completion times than MBTA, while also optimizing no-load distances. Although the running time of the proposed algorithm is slightly higher than that of MBTA, it is significantly lower than that of MGA, and its overall performance in reducing no-load distances and enhancing AGV utilization is superior to that of MGA. The proposed method can be applied to guide multiple AGVs in multi-material delivery tasks in real factory environments.

摘要

工厂环境中多自动导引车(AGV)任务分配的研究是智能制造中的一个关键课题。现有研究在任务分配中往往难以平衡公平性和优先级,导致AGV利用率低下和空载距离过长。此外,任务分配算法在实际生产环境中的稳定性和适用性面临重大挑战。为了解决这些问题,建立了一个数学模型,目标是在物料配送任务中最小化所有AGV的空载距离。随后,通过纳入任务分配平衡和优先级对该模型进行了改进。为求解该优化模型,提出了一种改进的粒子群优化算法,并基于实际工厂环境进行了大量仿真实验。通过将所提算法的优化结果与最新的多种群遗传算法(MGA)和基于市场的捆绑任务分配方法(MBTA)的结果进行比较,显然所提算法和MGA在AGV利用率和总任务完成时间方面均优于MBTA,同时还优化了空载距离。虽然所提算法的运行时间略高于MBTA,但明显低于MGA,并且其在减少空载距离和提高AGV利用率方面的整体性能优于MGA。所提方法可应用于实际工厂环境中多物料配送任务中多AGV的引导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fce/12129354/2951ca204c58/pone.0321616.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验