Wang Jing, Li Minmin, Zhang Chen, Zhao Xinjia, Xiong Yuting, Cao Yuchen, Wang Dongdong, Li Xiaonong, Liang Xinmiao, Qing Guangyan
Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
Angew Chem Int Ed Engl. 2025 Aug 4;64(32):e202506741. doi: 10.1002/anie.202506741. Epub 2025 Jun 8.
Typical nanopore sensing depends on slowed translocation through the pore to acquire effective blockade signals. However, this paradigm often suffers from low signal precision and poor resolution, making it challenging to resolve pools of analytes with diverse, similar structures. Here, we present a non-translocation blockade sensing based on an engineered aerolysin S278K that enables the identification of isomerically diverse ginsenosides-a class of glycoconjugates whose structural characterization has been a persistent challenge in glycoscience. By introducing the S278K mutation, the aerolysin acquires a highly positively charged interior and generates intense electro-osmotic flow and enhanced steric/enthalpic barriers, effectively trapping ginsenoside molecules in the K278-R220 region and preventing their further translocation. This distinct blockade sensing mode significantly improves the detection capability of aerolysin by prolonging residence time (e.g., 43-fold longer), enabling detailed molecular characterization. As a result, we demonstrate the unambiguous identification of 30 ginsenosides differing in glycosyl composition, isomerism, modification, and aglycone, as well as the quantitative analysis of complex ginsenosides in real samples by integrating deep learning. This work underscores the promise of non-translocation nanopore sensing for deciphering structurally complex and diverse small molecule analytes.
典型的纳米孔传感依赖于通过孔的缓慢转运来获取有效的阻断信号。然而,这种模式常常存在信号精度低和分辨率差的问题,使得解析具有不同但相似结构的分析物池具有挑战性。在此,我们提出了一种基于工程化气溶素S278K的非转运阻断传感方法,该方法能够鉴定结构异构的人参皂苷——这是一类糖缀合物,其结构表征一直是糖科学领域的一个持续挑战。通过引入S278K突变,气溶素获得了高度带正电的内部结构,并产生强烈的电渗流以及增强的空间/焓垒,有效地将人参皂苷分子捕获在K278-R220区域,并阻止它们进一步转运。这种独特的阻断传感模式通过延长停留时间(例如,延长43倍)显著提高了气溶素的检测能力,从而能够进行详细的分子表征。结果,我们展示了对30种在糖基组成、异构性、修饰和苷元方面存在差异的人参皂苷的明确鉴定,以及通过整合深度学习对实际样品中复杂人参皂苷进行定量分析。这项工作强调了非转运纳米孔传感在解析结构复杂多样的小分子分析物方面的前景。