Suppr超能文献

用于体内监测植物应激反应的机器学习驱动的可激活近红外二区荧光纳米传感器。

Machine learning-powered activatable NIR-II fluorescent nanosensor for in vivo monitoring of plant stress responses.

作者信息

Hu Hong, Yuan Hao, Sun Shengchun, Feng Jianxing, Shi Ning, Wang Zexiang, Liang Yan, Ying Yibin, Wang Yixian

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.

ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.

出版信息

Nat Commun. 2025 Jun 2;16(1):5114. doi: 10.1038/s41467-025-60182-w.

Abstract

Real-time monitoring of plant stress signaling molecules is crucial for early disease diagnosis and prevention. However, existing methods are often invasive and lack sensitivity, rendering them inadequate for continuous monitoring of subtle plant stress responses. In this study, we develop a non-destructive near-infrared-II (NIR-II) fluorescent nanosensor for real-time detection of stress-related HO signaling in living plants. This nanosensor effectively avoids interference from plant autofluorescence and specifically responds to trace amounts of endogenous HO, thereby providing a reliable means to real-time report stress information. We validate that it is a species-independent nanosensor by effectively monitoring the stress responses of different plant species. Additionally, with the aid of a machine learning model, we demonstrate that the nanosensor can accurately differentiate between four types of stress with an accuracy of more than 96.67%. Our study enhances the understanding of plant stress signaling mechanisms and offers reliable optical tools for precision agriculture.

摘要

实时监测植物应激信号分子对于早期疾病诊断和预防至关重要。然而,现有方法往往具有侵入性且缺乏灵敏度,不足以持续监测植物细微的应激反应。在本研究中,我们开发了一种用于实时检测活体植物中与应激相关的HO信号的无损近红外二区(NIR-II)荧光纳米传感器。该纳米传感器有效避免了植物自发荧光的干扰,并能特异性响应痕量内源性HO,从而提供了一种实时报告应激信息的可靠手段。我们通过有效监测不同植物物种的应激反应,验证了它是一种不依赖物种的纳米传感器。此外,借助机器学习模型,我们证明该纳米传感器能够以超过96.67%的准确率准确区分四种类型的应激。我们的研究增进了对植物应激信号传导机制的理解,并为精准农业提供了可靠的光学工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4806/12130273/3fe5eb1fdff8/41467_2025_60182_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验